Hyperbolic functions are functions with similar properties to [[Trigonometric Functions]] but are defined in terms of exponentials: $$ \sinh(x) \equiv \frac{e^x - e^{-x}}{2} \quad \quad \cosh(x) \equiv \frac{e^x + e^{-x}}{2}\quad \quad \tanh(x) \equiv \frac{\sinh(x)}{\cosh(x)} = \frac{e^{2x} - 1}{e^{2x} + 1} $$ $$ \begin{aligned} \text{cosech}(x) \equiv &\frac{1}{\sinh(x)} = \frac{2}{e^x - e^{-x}} \quad \quad \text{sech}(x) \equiv \frac{1}{\cosh(x)} = \frac{2}{e^x + e^{-x}} \ &\coth(x) \equiv \frac{1}{\tanh(x)} = \frac{\cosh(x)}{\sinh(x)} = \frac{e^{2x} + 1}{e^{2x} - 1} \end{aligned} $$
Hyperbolic function | Inverse | Natural Log Form |
---|---|---|
|
Generally given a trig identity you can find the corresponding hyperbolic identity with Osborn's Rule
Most found in formula booklet
#Maths/Topics/Trigonometry/Hyperbolic, #z_Legacy/Maths/A-Levels/Further-Core/Hyperbolic-Trig
What are the exponential definitions for the hyperbolic trig functions? ? $$ \sinh(x) \equiv \frac{e^x - e^{-x}}{2} \quad \quad \cosh(x) \equiv \frac{e^x + e^{-x}}{2}\quad \quad \tanh(x) \equiv \frac{\sinh(x)}{\cosh(x)} = \frac{e^{2x} - 1}{e^{2x} + 1} $$ $\begin{aligned}\text{cosech}(x) \equiv &\frac{1}{\sinh(x)} = \frac{2}{e^x - e^{-x}} \quad \quad\text{sech}(x) \equiv \frac{1}{\cosh(x)} = \frac{2}{e^x + e^{-x}} \&\coth(x) \equiv \frac{1}{\tanh(x)} = \frac{\cosh(x)}{\sinh(x)} =\frac{e^{2x} + 1}{e^{2x} - 1}\end{aligned}$
What is Osborn's Rule for hyperbolic trig identities?
?
Generally given a trig identity you can find the corresponding hyperbolic identity with Osborn's Rule
What are the range, domain and parities of the hyperbolic trig functions? ? Parity
-
$\sinh(x)$ is odd, so$\sinh(-x) = -\sinh(x), a \in \mathbb{R}$ -
$\cosh(x)$ is even, so$\cosh(-x) = \cosh(x), a \in \mathbb{R}$ -
$\tanh(x)$ is odd, so$\tanh(-x) = -\tanh(x), a \in \mathbb{R}$ Range and Domain -
$\sinh(x)$ -$x \in \mathbb{R}, y \in \mathbb{R}$ -
$\cosh(x)$ -$x \in \mathbb{R}, y \in \mathbb{R}, y \geq 1$ -
$\tanh(x)$ -$x \in \mathbb{R}, y \in \mathbb{R}, -1 < y < 1$