-
Notifications
You must be signed in to change notification settings - Fork 2
/
PCR_strainer_v_0_2_4.py
569 lines (533 loc) · 28.5 KB
/
PCR_strainer_v_0_2_4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
#!/usr/bin/env python3
# PCR_strainer - A tool for assessing inclusivity of PCR primers and probes against reference nucleotide sequences
#
# Kevin Kuchinski
# British Columbia Centre for Disease Control, Public Health Laboratory
# University of British Columbia, Department of Pathology and Laboratory Medicine
# kevin.kuchinski@bccdc.ca
import sys
import subprocess
import os
import numpy as np
import pandas as pd
def main():
version = '0.2.4'
# Parse command line arguments
args = parse_args(sys.argv, version)
print(f'\nPCR_strainer v{version}')
print('https://github.com/KevinKuchinski/PCR_strainer\n')
out_path, name = os.path.split(args['-o'])
out_path = '.' if out_path == '' else out_path
# Make sure output directory exists
if os.path.exists(out_path) == False or os.path.isdir(out_path) == False:
print(f'\nERROR: Output path {out_path} does not exist.\n')
exit(1)
# Check input genomes file
check_genomes_file(args['-g'])
# Parse assay file to get oligo names and seqs
assays = read_assay_file(args['-a'])
# Create empty dataframe for tabulated tntblast results
final_tntblast_results = pd.DataFrame()
# Get tntblast results for each assay
for assay_details in assays:
run_TNTBLAST(assay_details, args['-g'], out_path, args['-m'], args['-p'], args['-P'])
tntblast_results = parse_tntblast_output(assay_details, name, out_path)
final_tntblast_results = pd.concat([final_tntblast_results, tntblast_results], sort=True)
# Write report files
write_assay_report(name, out_path, final_tntblast_results, args['-g'], args['-t'])
write_variant_report(name, out_path, final_tntblast_results, args['-g'], args['-t'])
write_missed_seqs_report(name, out_path, final_tntblast_results, args['-g'])
write_tntblast_results(name, out_path, final_tntblast_results)
print('\nDone.\n')
def parse_args(args, version):
arg_values = {}
for arg_1, arg_2 in zip(args[1:-1], args[2:]):
if arg_1[0] == '-':
if arg_2[0] != '-':
arg_values[arg_1] = arg_2
else:
arg_values[arg_1] = ''
if args[-1][0] == '-':
arg_values[args[-1]] = ''
# Set defaults, mins, and maxs
required_args = {'-a', '-g', '-o'}
arg_value_types = {'-a': str, '-g':str, '-o': str, '-t': float, '-m': float, '-p': float, '-P': float}
min_arg_values = {'-t': 0, '-p': 0, '-P': 0}
max_arg_values = {'-t': 100}
default_arg_values = {'-t': 0, '-m': 45, '-p': 1, '-P': 1}
# Check if all required arguments were provided
missing_args = set()
for required_arg in required_args:
if required_arg not in arg_values.keys() or arg_values[required_arg] == '':
missing_args = missing_args | {required_arg}
if missing_args != set():
print(f'\nERROR: Values must be provided for the argument following arguments: {", ".join(sorted(missing_args))}')
print_usage(version)
exit(1)
# Check if unrecognized arguments were provided
recognized_args = required_args | set(arg_value_types.keys())
unrecognized_args = set()
for provided_arg in arg_values.keys():
if provided_arg not in recognized_args:
unrecognized_args = unrecognized_args | {provided_arg}
if unrecognized_args != set():
print(f'\nERROR: The following arguments are not recognized: {", ".join(sorted(unrecognized_args))}')
print_usage(version)
exit(1)
# Check if arguments were provided without values
empty_args = set()
for arg, value in arg_values.items():
if value == '':
empty_args = empty_args | {arg}
if empty_args != set():
print(f'\nERROR: The following arguments were provided without values: {", ".join(sorted(empty_args))}')
print_usage(version)
exit(1)
# Check if provided values are of the correct type
for arg, value in arg_values.items():
try:
arg_values[arg] = arg_value_types[arg](value)
except ValueError:
print(f'\nERROR: Value for argument {arg} must be of type {str(arg_value_types[arg].__name__)}')
print_usage(version)
exit(1)
# Check if provided values are within the correct range
for arg, value in arg_values.items():
if arg in min_arg_values.keys() and value <= min_arg_values[arg]:
print(f'\nERROR: Value for argument {arg} must be greater than {min_arg_values[arg]}')
print_usage(version)
exit(1)
if arg in max_arg_values.keys() and value >= max_arg_values[arg]:
print(f'\nERROR: Value for argument {arg} must be less than {max_arg_values[arg]}')
print_usage(version)
exit(1)
# Assign default values to unspecified arguments
for arg, value in default_arg_values.items():
if arg not in arg_values.keys():
arg_values[arg] = value
# Return keyword args and their values
return arg_values
def print_usage(version):
print(f'\nPCR_strainer v{version}')
print('https://github.com/KevinKuchinski/PCR_strainer\n')
print('Usage: pcr_strainer -a <assay CSV> -g <genomes FASTA> -o <path to output directory>/<output name> [<optional args>]\n')
print('Required arguments:')
print(' -a : path to assay details in CSV file')
print(' -g : path to target genomes in FASTA file')
print(' -o : path to output directory and name to append to output files')
print('Optional arguments:')
print(' -t : minimum prevalence (%) of primer site variants reported in reports (default=0, min > 0, max < 100)')
print(' -m : minimum Tm (degrees C) for primers and probes (default=45)')
print(' -p : molar concentration of primer oligos (uM) (default=1, min > 0)')
print(' -P : molar concentration of probe oligos (uM) (default=1, min > 0)\n')
def check_genomes_file(path_to_file):
'''Checks that file exists, is not empty, and headers are unique and hashable.'''
if os.path.exists(path_to_file) == False or os.path.isfile(path_to_file) == False:
print(f'\nERROR: Genomes FASTA file {path_to_file} does not exist.\n')
exit(1)
if os.path.getsize(path_to_file) == 0:
print(f'\nERROR: Genomes FASTA file {path_to_file} is empty.\n')
exit(1)
with open(path_to_file, 'r') as input_file:
headers = []
for line in input_file:
if line[0] == '>':
headers.append(line.strip().lstrip('>'))
if len(headers) != len(set(headers)):
print('\nERROR: FASTA headers in input genomes file must be unique.\n')
exit(1)
def read_assay_file(path_to_file):
"""Read input assay file and parse each list into a tuple:
(assay_name,fwd_oligo_name,fwd_oligo_seq,rev_oligo_name,rev_oligo_seq,probe_oligo_name,probe_oligo_seq)
Return a tuple of these tuples."""
if os.path.exists(path_to_file) == False or os.path.isfile(path_to_file) == False:
print(f'\nERROR: Assay CSV file {path_to_file} does not exist.\n')
exit(1)
if os.path.getsize(path_to_file) == 0:
print(f'\nERROR: Assay CSV file {path_to_file} is empty.\n')
exit(1)
assays = []
with open(path_to_file, 'r') as input_file:
for line in input_file:
line = line.rstrip().split(',')
# Check if line has the accepted number of comma-separated values
if len(line) not in [5, 7]:
print('\nERROR: Line in assay file not properly formatted:')
print(','.join(line))
print('\nAssay file lines must be a comma-separated list:')
print('assay_name,fwd_primer_name,fwd_primer_seq,rev_primer_name,rev_primer_seq,probe_name,probe_seq')
exit(1)
else:
assay_name = line[0]
fwd_primer_name = line[1]
fwd_primer_seq = line[2]
rev_primer_name = line[3]
rev_primer_seq = line[4]
if len(line) == 7:
probe_name = line[5]
probe_seq = line[6]
else:
probe_name = ''
probe_seq = ''
# Check if any assay or primer names are empty
names = [assay_name, fwd_primer_name, rev_primer_name]
names += [probe_name] if probe_seq != '' else []
if any([name == '' for name in names]):
print('\nERROR: Assay and oligo names cannot be empty:')
print(','.join(line))
print()
exit(1)
# Check if oligo seqs contain invalid bases
bases = 'ATGCWSMKRYBVDHN'
for oligo, seq in zip(['fwd primer', 'rev primer', 'probe'], [fwd_primer_seq, rev_primer_seq, probe_seq]):
if len(set(seq.upper()) - set(bases)) > 0:
print(f'\nERROR: Oligo seq for {oligo} contains invalid bases:')
print(seq)
print()
exit(1)
# Create assay info tuple and append to assays list
assay = (assay_name, fwd_primer_name, fwd_primer_seq, rev_primer_name, rev_primer_seq, probe_name, probe_seq)
assays.append(assay)
# Check that names used for assays and oligos are unique
for name_index in [0, 1, 3, 5]:
names = [assay[name_index] for assay in assays if assay[name_index] != '']
if len(names) != len(set(names)):
print('\nERROR: Assay and oligo names must be unique!\n')
exit()
return tuple(assays)
def run_TNTBLAST(assay_details, path_to_genomes, path_to_output, melting_temp, primer_molarity, probe_molarity):
"""Run TNTBLAST with provided assay details."""
# Create TNTBLAST assay file from assay details (TSV file of assay name and oligo seqs)
assay_name = assay_details[0]
fwd_primer_seq = assay_details[2]
rev_primer_seq = assay_details[4]
probe_seq = assay_details[6]
print(f'Running TNTBLAST for {assay_name} against {path_to_genomes}...')
print(f'Fwd primer seq: {fwd_primer_seq}\nRev primer seq: {rev_primer_seq}')
if probe_seq != '':
print(f'Probe seq: {probe_seq}')
assay = [assay_name, fwd_primer_seq, rev_primer_seq]
assay += [probe_seq] if probe_seq != '' else []
assay = '\t'.join(assay)
path_to_tntblast_assay = os.path.join(path_to_output, assay_name + '_tntblast_assay.tsv')
with open(path_to_tntblast_assay, 'w') as output_file:
output_file.write(assay + '\n')
# Create terminal command for TNTBLAST and run
path_to_tntblast_txt_output = os.path.join(path_to_output, assay_name + '_tntblast_output.txt')
terminal_command = (f'tntblast -i {path_to_tntblast_assay} -d {path_to_genomes} -o {path_to_tntblast_txt_output}'
f' -e {melting_temp} -E {melting_temp} -t {primer_molarity / 1000000} -T {probe_molarity / 1000000}'
f' --best-match -m 0 -v F')
completed_process = subprocess.run(terminal_command, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, shell=True)
if completed_process.returncode != 0:
print(f'\nERROR: TNTBLAST terminated with errors.\nTNTBLAST error code: {completed_process.returncodes}\n')
exit(1)
# GARBAGE COLLECTION (remove TNTBLAST assay TSV file)
os.remove(path_to_tntblast_assay)
print()
def parse_tntblast_output(assay_details, job_name, path_to_output):
"""Parses txt format output from TNTBLAST and tabulates relevant data into Pandas dataframes.
Returns the dataframe."""
# Create list of fields to capture from results
oligos = ['forward primer', 'reverse primer', 'probe']
fields = ['amplicon range', 'probe range']
fields += ['name', 'target'] + [oligo + ' mismatches' for oligo in oligos]
fields += [oligo + ' gaps' for oligo in oligos] + ['amplicon seq']
# Create empty dict for tntblast results
tntblast_results = {field: [] for field in fields}
# Open TNTBLAST output and parse results into dataframe
assay_name = assay_details[0]
print('Parsing TNTBLAST output from', assay_name, '...')
path_to_tntblast_txt_input = os.path.join(path_to_output, assay_name + '_tntblast_output.txt')
if os.path.exists(path_to_tntblast_txt_input) == False:
print('\nERROR: Expected TNTBLAST output does not exist.\n')
exit(1)
with open(path_to_tntblast_txt_input, 'r') as input_file:
input_lines = input_file.readlines()
for line_index, line in enumerate(input_lines):
if ' = ' in line:
key, value = line.split(' = ')
if key in fields:
tntblast_results[key].append(value.strip())
elif line[0] == '>':
tntblast_results['target'].append(line.strip().lstrip('>'))
tntblast_results['amplicon seq'].append(input_lines[line_index+1].strip())
# Add NaN for probe oligo fields if probe not provided
if assay_details[5] == '' and assay_details[6] == '':
tntblast_results['probe mismatches'].append(np.nan)
tntblast_results['probe gaps'].append(np.nan)
tntblast_results['probe range'].append(np.nan)
# Convert dictionary to dataframe and re-order columns
tntblast_results = pd.DataFrame.from_dict(tntblast_results)
tntblast_results = tntblast_results[fields]
# Rename columns
oligos = ['fwd_primer', 'rev_primer', 'probe']
cols = ['amplicon_range', 'probe_range']
cols += ['assay_name', 'target'] + [oligo + '_mismatches' for oligo in oligos]
cols += [oligo + '_gaps' for oligo in oligos] + ['amplicon_seq']
tntblast_results.columns = cols
# Convert mismatches and gaps columns to ints
oligos = ['fwd_primer', 'rev_primer']
if assay_details[5] != '' and assay_details[6] != '':
oligos += ['probe']
for oligo in oligos:
tntblast_results[oligo + '_mismatches'] = tntblast_results[oligo + '_mismatches'].astype(int)
tntblast_results[oligo + '_gaps'] = tntblast_results[oligo + '_gaps'].astype(int)
# Add column for total oligo errors
for oligo in oligos:
tntblast_results[oligo + '_errors'] = tntblast_results[oligo + '_mismatches'] + tntblast_results[oligo + '_gaps']
if assay_details[5] == '' and assay_details[6] == '':
tntblast_results['probe_errors'] = np.nan
# Add column for total assay errors
tntblast_results['total_errors'] = tntblast_results[[oligo + '_errors' for oligo in oligos]].sum(axis=1)
# Add columns for oligo names and oligo seqs
oligos = ['fwd_primer', 'rev_primer', 'probe']
oligo_names = [assay_details[i] for i in [1, 3, 5]]
oligo_seqs = [assay_details[i] for i in [2, 4, 6]]
for oligo, name, seq in zip(oligos, oligo_names, oligo_seqs):
tntblast_results[oligo + '_name'] = name
tntblast_results[oligo + '_name'] = tntblast_results[oligo + '_name'].replace('', np.nan)
tntblast_results[oligo + '_seq'] = seq
tntblast_results[oligo + '_seq'] = tntblast_results[oligo + '_seq'].replace('', np.nan)
# Function for getting reverse complement of sequence
comp_bases = {'A': 'T', 'T': 'A',
'G': 'C', 'C': 'G',
'W': 'W', 'S': 'S',
'M': 'K', 'K': 'M',
'R': 'Y', 'Y': 'R',
'B': 'V', 'V': 'B',
'D': 'H', 'H': 'D',
'N': 'N', '-': '-'}
rev_comp = lambda seq: ''.join([comp_bases[base] for base in seq[::-1]])
# Extract oligo site seqs from amplicon seq
def get_fwd_primer_site(row):
fwd_primer_seq = row['fwd_primer_seq']
site_length = len(row['fwd_primer_seq']) + row['fwd_primer_gaps']
fwd_primer_site_seq = row['amplicon_seq'][:site_length]
fwd_primer_site_seq = write_oligo_site_variant(fwd_primer_seq, fwd_primer_site_seq)
return fwd_primer_site_seq
tntblast_results['fwd_primer_site_seq'] = tntblast_results.apply(get_fwd_primer_site, axis=1)
def get_rev_primer_site(row):
rev_primer_seq = row['rev_primer_seq']
site_length = len(row['rev_primer_seq']) + row['rev_primer_gaps']
rev_primer_site_seq = rev_comp(row['amplicon_seq'][-site_length:])
rev_primer_site_seq = write_oligo_site_variant(rev_primer_seq, rev_primer_site_seq)
return rev_primer_site_seq
tntblast_results['rev_primer_site_seq'] = tntblast_results.apply(get_rev_primer_site, axis=1)
def get_probe_site(row):
probe_start = int(row['probe_range'][0]) - int(row['amplicon_range'][0])
probe_length = int(row['probe_range'][1]) - int(row['probe_range'][0]) + row['probe_gaps'] + 1
probe_end = probe_start + probe_length
probe_site_seq = row['amplicon_seq'][probe_start:probe_end]
probe_site_seq = write_oligo_site_variant(row['probe_seq'], probe_site_seq)
return probe_site_seq
if assay_details[5] == '' and assay_details[6] == '':
tntblast_results['probe_site_seq'] = np.nan
else:
tntblast_results['amplicon_range'] = tntblast_results['amplicon_range'].str.split(' .. ')
tntblast_results['probe_range'] = tntblast_results['probe_range'].str.split(' .. ')
tntblast_results['probe_site_seq'] = tntblast_results.apply(get_probe_site, axis=1)
# Re-order columns
oligos = ['fwd_primer', 'rev_primer', 'probe']
oligo_cols = ['name', 'seq', 'site_seq', 'mismatches', 'gaps', 'errors']
cols = ['assay_name', 'target', 'total_errors'] + [oligo + '_' + col for oligo in oligos for col in oligo_cols]
tntblast_results = tntblast_results[cols]
# GARBAGE COLLECTION
os.remove(path_to_tntblast_txt_input)
print()
return tntblast_results
def write_tntblast_results(job_name, path_to_output, tntblast_results):
"""Writes tabulated results in Pandas dataframe to a TSV file."""
print('Writing PCR results...')
# Re-order columns
oligos = ['fwd_primer', 'rev_primer', 'probe']
oligo_cols = ['name', 'seq', 'site_seq', 'mismatches', 'gaps', 'errors']
cols = ['assay_name', 'target', 'total_errors'] + [oligo + '_' + col for oligo in oligos for col in oligo_cols]
tntblast_results = tntblast_results[cols]
# Write output
path_to_tntblast_tsv = os.path.join(path_to_output, job_name + '_PCR_results.tsv')
tntblast_results.to_csv(path_to_tntblast_tsv, sep='\t', index=False)
def count_targets(path_to_genomes):
"""Counts the number of target sequences in the provided genomes FASTA file.
Returns an int of the count."""
with open(path_to_genomes, 'r') as input_file:
seq_counter = 0
for line in input_file:
if line[0] == '>':
seq_counter += 1
return int(seq_counter)
def write_assay_report(job_name, path_to_output, tntblast_results, path_to_genomes, threshold):
"""Takes TNTBLAST results in Pandas dataframe and writes the assay report, which describes the number of
target sequences with 0, 1, 2, 3... total errors for each assay. Writes report to TSV file."""
print('Writing assay report...')
# Count number of targets with each level of total errors for all assays
cols = ['assay_name', 'total_errors']
assay_report = tntblast_results[cols].groupby(cols).size().reset_index()
assay_report.columns = ['assay_name', 'total_errors', 'target_count']
# Count targets detected by each assay
targets_detected = tntblast_results['assay_name'].value_counts().reset_index()
targets_detected.columns = ['assay_name', 'detected_targets']
assay_report = pd.merge(assay_report, targets_detected, on='assay_name')
# Count total targets
assay_report['total_targets'] = count_targets(path_to_genomes)
# Calculate percentage of total targets detected by TNTBLAST
assay_report['perc_detected'] = round(assay_report['detected_targets'] * 100 / assay_report['total_targets'],2)
# Calculate percentage of detected targets representing each level of total errors
assay_report['perc_of_detected'] = round(assay_report['target_count'] * 100 / assay_report['detected_targets'],2)
# Calculate percentage of total targets representing each level of total errors
assay_report['perc_of_total'] = round(assay_report['target_count'] * 100 / assay_report['total_targets'],2)
# Drop report rows with percent of detected below threshold
assay_report = assay_report[assay_report['perc_of_detected']>=float(threshold)]
# Reorder columns and write assay report to TSV file
path_to_report_file = os.path.join(path_to_output, job_name + '_assay_report.tsv')
assay_report = assay_report.sort_values(['assay_name', 'target_count'], ascending=[True, False])
cols = ['assay_name', 'total_targets', 'detected_targets', 'perc_detected', 'total_errors',
'target_count', 'perc_of_detected', 'perc_of_total']
assay_report[cols].to_csv(path_to_report_file, sep='\t', index=False)
def write_variant_report(job_name, path_to_output, tntblast_results, path_to_genomes, threshold):
"""Takes TNTBLAST results in Pandas dataframe and writes the variant report, which describes
oligo site variants whose prevalence exceeded the provided threshold. Writes report to TSV file."""
print('Writing variant report...')
# Create variant report
variant_report = pd.DataFrame()
for oligo in ['fwd_primer', 'rev_primer', 'probe']:
cols = ['assay_name', oligo + '_name', oligo + '_seq', oligo + '_site_seq', oligo + '_errors']
oligo_data = tntblast_results[cols]
cols = ['assay_name', 'oligo_name', 'oligo_seq', 'oligo_site_variant', 'oligo_errors']
oligo_data.columns = cols
oligo_data = oligo_data[cols].groupby(cols).size().reset_index()
oligo_data.columns = cols + ['target_count']
oligo_data['oligo'] = oligo
variant_report = pd.concat([variant_report, oligo_data], sort=True)
# Count targets detected by each assay
targets_detected = tntblast_results['assay_name'].value_counts().reset_index()
targets_detected.columns = ['assay_name', 'detected_targets']
variant_report = pd.merge(variant_report, targets_detected, on='assay_name')
# Count total targets
variant_report['total_targets'] = count_targets(path_to_genomes)
# Calculate percentage of total targets detected by TNTBLAST
variant_report['perc_detected'] = round(variant_report['detected_targets'] * 100 / variant_report['total_targets'],2)
# Calculate percentage of detected targets representing each level of total errors
variant_report['perc_of_detected'] = round(variant_report['target_count'] * 100 / variant_report['detected_targets'],2)
# Calculate percentage of total targets representing each level of total errors
variant_report['perc_of_total'] = round(variant_report['target_count'] * 100 / variant_report['total_targets'],2)
# Drop rows for variants with no errors
variant_report = variant_report[variant_report['oligo_errors']!=0]
# Drop report rows with percent of detected below threshold
variant_report = variant_report[variant_report['perc_of_detected']>=float(threshold)]
# Reorder columns an write assay report to TSV file
path_to_report_file = os.path.join(path_to_output, job_name + '_variant_report.tsv')
variant_report = variant_report.sort_values(['assay_name', 'oligo', 'target_count'], ascending=[True, True, False])
cols = ['assay_name', 'oligo', 'oligo_name', 'oligo_seq', 'total_targets', 'detected_targets', 'perc_detected',
'oligo_site_variant', 'oligo_errors', 'target_count', 'perc_of_detected', 'perc_of_total']
variant_report[cols].to_csv(path_to_report_file, sep='\t', index=False)
def longest_common_kmer(seq_1, seq_2):
enum_kmers = lambda seq, k: set(seq[i:i+k] for i in range(len(seq) - k + 1))
common_kmers = lambda seq_1, seq_2, k: enum_kmers(seq_1, k) & enum_kmers(seq_2, k)
uniq_kmer = lambda seq_1, seq_2, kmer: True if seq_1.count(kmer) == 1 and seq_2.count(kmer) == 1 else False
l = min(len(seq_1), len(seq_2))
k = [kmer for kmer in common_kmers(seq_1, seq_2, l) if uniq_kmer(seq_1, seq_2, kmer) == True]
while l > 0 and len(k) == 0:
l -= 1
k = [kmer for kmer in common_kmers(seq_1, seq_2, l) if uniq_kmer(seq_1, seq_2, kmer) == True]
if len(k) > 0:
return k[0]
else:
return None
def align_seqs(seq_1, seq_2):
if type(seq_1) != list:
seq_1 = [seq_1]
if type(seq_2) != list:
seq_2 = [seq_2]
new_seq_1 = []
new_seq_2 = []
for sub_seq_1, sub_seq_2 in zip(seq_1, seq_2):
if sub_seq_1 == sub_seq_2:
k = None
else:
k = longest_common_kmer(sub_seq_1, sub_seq_2)
if k != None:
sub_seq_1 = sub_seq_1.split(k)
sub_seq_2 = sub_seq_2.split(k)
sub_seq_1 = [sub_seq_1[0], k, sub_seq_1[1]]
sub_seq_2 = [sub_seq_2[0], k, sub_seq_2[1]]
sub_seq_1, sub_seq_2 = align_seqs(sub_seq_1, sub_seq_2)
else:
sub_seq_1 = [sub_seq_1]
sub_seq_2 = [sub_seq_2]
new_seq_1 += sub_seq_1
new_seq_2 += sub_seq_2
return new_seq_1, new_seq_2
def write_oligo_site_variant(oligo_seq, oligo_site_variant):
seq_1_alignment, seq_2_alignment = align_seqs(oligo_seq, oligo_site_variant)
seq_1, seq_2 = '', ''
for sub_seq_1, sub_seq_2 in zip(seq_1_alignment, seq_2_alignment):
if len(sub_seq_1) == len(sub_seq_2):
seq_1 += sub_seq_1.upper()
seq_2 += sub_seq_2.upper()
elif len(sub_seq_1) > len(sub_seq_2):
seq_1 += sub_seq_1.upper()
seq_2 += '-' * (len(sub_seq_1) - len(sub_seq_2))
seq_2 += sub_seq_2.upper()
elif len(sub_seq_2) > len(sub_seq_1):
seq_1 += '-' * (len(sub_seq_2) - len(sub_seq_1))
seq_1 += sub_seq_1.upper()
seq_2 += sub_seq_2.upper()
oligo_site_variant = ''
seq_length = len(seq_1.rstrip('-'))
seq_1 = seq_1[:seq_length]
seq_2 = seq_2[:seq_length]
for base_1, base_2 in zip(seq_1, seq_2):
if base_1 == base_2:
oligo_site_variant += base_2.upper()
elif base_2 == '-':
oligo_site_variant += base_2
elif base_1 == '-':
oligo_site_variant += '(' + base_2.upper() + ')'
elif base_1 != base_2:
oligo_site_variant += base_2.lower()
oligo_site_variant = oligo_site_variant.replace(')(', '')
return oligo_site_variant
def get_targets(path_to_genomes):
"""Reads all sequence in the provided genomes FASTA file and returns them in
a dict where keys are FASTA headers and values are the nucleotide sequences."""
with open(path_to_genomes, 'r') as input_file:
seqs = {}
for line in input_file:
if line[0] == '>':
header = line.strip().lstrip('>')
seqs[header] = ''
else:
seqs[header] += line.strip()
return seqs
def write_missed_seqs_report(job_name, path_to_output, tntblast_results, path_to_genomes):
"""Takes TNTBLAST results in Pandas dataframe and the provided genomes FASTA file and writes
a report describing sequences in the provided genome targets that were not detected by TNTBLAST.
Writes report to TSV file."""
print('Writing missed sequences report...')
missed_seqs_report = pd.DataFrame()
seqs = get_targets(path_to_genomes)
all_seqs = set(seqs.keys())
for assay in tntblast_results['assay_name'].unique():
found_seqs = set(tntblast_results[tntblast_results['assay_name']==assay]['target'].unique())
missed_seqs = sorted(all_seqs - found_seqs)
assay_data = pd.DataFrame()
assay_data['target'] = missed_seqs
assay_data['assay_name'] = assay
if len(missed_seqs) > 0:
assay_data['target_length'] = assay_data.apply(lambda row: len(seqs[row['target']]), axis=1)
assay_data['total_Ns'] = assay_data.apply(lambda row: seqs[row['target']].count('N'), axis=1)
assay_data['perc_Ns'] = round(assay_data['total_Ns'] * 100 / assay_data['target_length'], 2)
else:
assay_data['target_length'] = []
assay_data['total_Ns'] = []
assay_data['perc_Ns'] = []
missed_seqs_report = pd.concat([missed_seqs_report, assay_data], sort=True)
# Convert total length and total Ns columns to ints
missed_seqs_report['target_length'] = missed_seqs_report['target_length'].astype(int)
missed_seqs_report['total_Ns'] = missed_seqs_report['total_Ns'].astype(int)
# Reorder columns and write report
path_to_report_file = os.path.join(path_to_output, job_name + '_missed_seqs_report.tsv')
cols = ['assay_name', 'target', 'target_length', 'total_Ns', 'perc_Ns']
missed_seqs_report[cols].to_csv(path_to_report_file, sep='\t', index=False)
if __name__ == '__main__':
main()