-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathmain.py
169 lines (142 loc) · 6.03 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import argparse
import time
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from pipeline.resnet_csra import ResNet_CSRA
from pipeline.vit_csra import VIT_B16_224_CSRA, VIT_L16_224_CSRA, VIT_CSRA
from pipeline.dataset import DataSet
from utils.evaluation.eval import evaluation
from utils.evaluation.warmUpLR import WarmUpLR
from tqdm import tqdm
# modify for wider dataset and vit models
def Args():
parser = argparse.ArgumentParser(description="settings")
# model
parser.add_argument("--model", default="resnet101")
parser.add_argument("--num_heads", default=1, type=int)
parser.add_argument("--lam",default=0.1, type=float)
parser.add_argument("--cutmix", default=None, type=str) # the path to load cutmix-pretrained backbone
# dataset
parser.add_argument("--dataset", default="voc07", type=str)
parser.add_argument("--num_cls", default=20, type=int)
parser.add_argument("--train_aug", default=["randomflip", "resizedcrop"], type=list)
parser.add_argument("--test_aug", default=[], type=list)
parser.add_argument("--img_size", default=448, type=int)
parser.add_argument("--batch_size", default=16, type=int)
# optimizer, default SGD
parser.add_argument("--lr", default=0.01, type=float)
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--w_d", default=0.0001, type=float, help="weight_decay")
parser.add_argument("--warmup_epoch", default=2, type=int)
parser.add_argument("--total_epoch", default=30, type=int)
parser.add_argument("--print_freq", default=100, type=int)
args = parser.parse_args()
return args
def train(i, args, model, train_loader, optimizer, warmup_scheduler):
print()
model.train()
epoch_begin = time.time()
for index, data in enumerate(train_loader):
batch_begin = time.time()
img = data['img'].cuda()
target = data['target'].cuda()
optimizer.zero_grad()
logit, loss = model(img, target)
loss = loss.mean()
loss.backward()
optimizer.step()
t = time.time() - batch_begin
if index % args.print_freq == 0:
print("Epoch {}[{}/{}]: loss:{:.5f}, lr:{:.5f}, time:{:.4f}".format(
i,
args.batch_size * (index + 1),
len(train_loader.dataset),
loss,
optimizer.param_groups[0]["lr"],
float(t)
))
if warmup_scheduler and i <= args.warmup_epoch:
warmup_scheduler.step()
t = time.time() - epoch_begin
print("Epoch {} training ends, total {:.2f}s".format(i, t))
def val(i, args, model, test_loader, test_file):
model.eval()
print("Test on Epoch {}".format(i))
result_list = []
# calculate logit
for index, data in enumerate(tqdm(test_loader)):
img = data['img'].cuda()
target = data['target'].cuda()
img_path = data['img_path']
with torch.no_grad():
logit = model(img)
result = nn.Sigmoid()(logit).cpu().detach().numpy().tolist()
for k in range(len(img_path)):
result_list.append(
{
"file_name": img_path[k].split("/")[-1].split(".")[0],
"scores": result[k]
}
)
# cal_mAP OP OR
evaluation(result=result_list, types=args.dataset, ann_path=test_file[0])
def main():
args = Args()
# model
if args.model == "resnet101":
model = ResNet_CSRA(num_heads=args.num_heads, lam=args.lam, num_classes=args.num_cls, cutmix=args.cutmix)
if args.model == "vit_B16_224":
model = VIT_B16_224_CSRA(cls_num_heads=args.num_heads, lam=args.lam, cls_num_cls=args.num_cls)
if args.model == "vit_L16_224":
model = VIT_L16_224_CSRA(cls_num_heads=args.num_heads, lam=args.lam, cls_num_cls=args.num_cls)
model.cuda()
if torch.cuda.device_count() > 1:
print("lets use {} GPUs.".format(torch.cuda.device_count()))
model = nn.DataParallel(model, device_ids=list(range(torch.cuda.device_count())))
# data
if args.dataset == "voc07":
train_file = ["data/voc07/trainval_voc07.json"]
test_file = ['data/voc07/test_voc07.json']
step_size = 4
if args.dataset == "coco":
train_file = ['data/coco/train_coco2014.json']
test_file = ['data/coco/val_coco2014.json']
step_size = 5
if args.dataset == "wider":
train_file = ['data/wider/trainval_wider.json']
test_file = ["data/wider/test_wider.json"]
step_size = 5
args.train_aug = ["randomflip"]
train_dataset = DataSet(train_file, args.train_aug, args.img_size, args.dataset)
test_dataset = DataSet(test_file, args.test_aug, args.img_size, args.dataset)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=8)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=8)
# optimizer and warmup
backbone, classifier = [], []
for name, param in model.named_parameters():
if 'classifier' in name:
classifier.append(param)
else:
backbone.append(param)
optimizer = optim.SGD(
[
{'params': backbone, 'lr': args.lr},
{'params': classifier, 'lr': args.lr * 10}
],
momentum=args.momentum, weight_decay=args.w_d)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=0.1)
iter_per_epoch = len(train_loader)
if args.warmup_epoch > 0:
warmup_scheduler = WarmUpLR(optimizer, iter_per_epoch * args.warmup_epoch)
else:
warmup_scheduler = None
# training and validation
for i in range(1, args.total_epoch + 1):
train(i, args, model, train_loader, optimizer, warmup_scheduler)
torch.save(model.state_dict(), "checkpoint/{}/epoch_{}.pth".format(args.model, i))
val(i, args, model, test_loader, test_file)
scheduler.step()
if __name__ == "__main__":
main()