手部21点关键点识别
- ResNet34+Finetune
- SqueezeNet+Finetune
- Hourglass
- Openpose+Design Loss
- 更好的效果展示
- 抗遮挡
CMU手部数据集(遮挡比较变态)
Hands from Synthetic Data (6546 + 3243 + 2348 + 2124 = 14261 annotations)
└─hand_labels_synth
├─output_viz_synth
├─synth1(json文件数据缺失指尖5个关键点)
├─synth2
├─synth3
└─synth4
SqueezeNet+Finetune
Finetune = nn.Sequential(
Flatten(),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(247808, 256),
#ReLU不能放BN前会导致BN方差计算错误
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(256, 42),
Reshape(-1,21,2),
nn.Tanh()
)
Total params: 64,172,906
Total trainable params: 64,172,906
Total non-trainable params: 0
Loss function : MSELoss
Epoch : 200
LR : 0.01->0.0001
Train Loss end : 0.010500
Valid Loss end : 0.012454
CPU上0.0234s一张图片
GPU-2070Ti上0.00727s一张图片