-
Notifications
You must be signed in to change notification settings - Fork 22
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
ENH: Add example to demonstrate NRRD ultrasound sequence -> VideoStream
- Loading branch information
Showing
5 changed files
with
170 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
1 change: 1 addition & 0 deletions
1
test/Baseline/itkNrrdSequenceToVideoStreamTestOutputBaseline.mha.sha512
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
bf58cd3cc26d1374544bf91807dc8dbad8f146677a5d9bf417d63de6b9c4d001c41b587e7f23cf103541e24e3e34b3a96cc65c06c06beb6df55c407f2ea0ad12 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
af573ba1708c400c01755c3de639e66783728d99a7056fd568d4789e5b3b0bed22658b3d66556719354e0d6245fcd137a35e3c3e51c380803cb8dfd697ff3bba |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
/*========================================================================= | ||
* | ||
* Copyright NumFOCUS | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0.txt | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
* | ||
*=========================================================================*/ | ||
|
||
#include "itkTestingMacros.h" | ||
#include "itkImageRegionIteratorWithIndex.h" | ||
#include "itkImageFileReader.h" | ||
#include "itkImageFileWriter.h" | ||
#include "itkImageToVideoFilter.h" | ||
|
||
/* Example demonstration conversion of NRRD sequence file to a video stream. | ||
* | ||
* 3D Slicer writes out video frame sequences in NRRD list format, while ITK | ||
* interprets NRRD lists as pixel channels. This leads to the undesirable situation | ||
* where video frames load into ITK with the time domain along the pixel channel | ||
* direction, which is not easy to work with for ITK filtering pipelines or general | ||
* analysis. | ||
* | ||
* This example demonstrates reading in a sequence of 2D video frames captured from | ||
* an ultrasound phantom as a 2D VectorImage with each pixel representing a vector | ||
* of measurements in time. We manually allocate an itk::Image and manually iterate over | ||
* the VectorImage getting pixel values to produce a 3D volume representing two spatial | ||
* dimensions and one temporal dimension, which we save to disk. We then convert | ||
* the volume to an itk::VideoStream of 2D ultrasound images in order to carry out | ||
* subsequent analysis with time as a first-class citizen of the data object. | ||
* | ||
* Underlying metadata (spacing, origin, directionality) and assumptions (LPS orientation) | ||
* are propagated through each procedural step. | ||
*/ | ||
int | ||
itkNrrdSequenceToVideoStreamTest(int argc, char * argv[]) | ||
{ | ||
if (argc < 3) | ||
{ | ||
std::cerr << "Usage: " << argv[0]; | ||
std::cerr << " <inputImage.seq.nrrd> <outputFrame0.mha>"; | ||
std::cerr << std::endl; | ||
return EXIT_FAILURE; | ||
} | ||
const char * inputImageFileName = argv[1]; | ||
const char * outputFrameFileName = argv[2]; | ||
|
||
using PixelType = float; | ||
const unsigned int Dimension = 3; | ||
using VectorImageType = itk::VectorImage<PixelType, Dimension>; | ||
|
||
// Read in sequence data. | ||
// Our example data has 3 spatial axes of size 512x512x1 | ||
// and a temporal axis of size 118. | ||
// We must read in all axes to preserve metadata from the NRRD file. | ||
using ReaderType = itk::ImageFileReader<VectorImageType>; | ||
ReaderType::Pointer reader = ReaderType::New(); | ||
ITK_TRY_EXPECT_NO_EXCEPTION(reader->SetFileName(inputImageFileName)); | ||
ITK_TRY_EXPECT_NO_EXCEPTION(reader->Update()); | ||
VectorImageType::Pointer input = reader->GetOutput(); | ||
|
||
// Allocate the 3D destination volume. | ||
// In ITK the 0th accessor index is the fastest-moving index in memory, | ||
// so we will let the 0th index correspond to the pixel component (time) dimension | ||
// as the remaining 1,..,n indices correspond to the 0,...,n-1 spatial indices | ||
// in the input image. | ||
using ImageType = itk::Image<PixelType, Dimension>; | ||
typename ImageType::RegionType region; | ||
region.SetSize(itk::MakeSize(input->GetNumberOfComponentsPerPixel(), | ||
input->GetLargestPossibleRegion().GetSize(0), | ||
input->GetLargestPossibleRegion().GetSize(1))); | ||
region.SetIndex(itk::MakeIndex(0, 0, 0)); | ||
|
||
ImageType::Pointer scalarImage = ImageType::New(); | ||
ITK_TRY_EXPECT_NO_EXCEPTION(scalarImage->SetRegions(region)); | ||
ITK_TRY_EXPECT_NO_EXCEPTION(scalarImage->Allocate()); | ||
|
||
// Propagate metadata. | ||
// The Image class requires isotropic spacing, though this may be | ||
// unrealistic for video data acquired with a variable frame rate. | ||
// Here we specify that our data is collected at approximately 1 frame / 30 ms. | ||
ImageType::SpacingType imageSpacing; | ||
imageSpacing[0] = 0.03f; | ||
imageSpacing[1] = input->GetSpacing()[0]; | ||
imageSpacing[2] = input->GetSpacing()[1]; | ||
scalarImage->SetSpacing(imageSpacing); | ||
|
||
ImageType::PointType imageOrigin; | ||
imageOrigin[0] = 0.0f; | ||
imageOrigin[1] = input->GetOrigin()[0]; | ||
imageOrigin[2] = input->GetOrigin()[1]; | ||
ITK_TRY_EXPECT_NO_EXCEPTION(scalarImage->SetOrigin(imageOrigin)); | ||
|
||
// We will never rotate along the time axis, so we set the identity | ||
// direction for time and propagate the remaining direction submatrix. | ||
// We intentionally discard the elevational axis. | ||
ImageType::DirectionType imageDirection; | ||
imageDirection.SetIdentity(); | ||
for (itk::IndexValueType r = 0; r < input->GetImageDimension() - 1; ++r) | ||
{ | ||
for (itk::IndexValueType c = 0; c < input->GetImageDimension() - 1; ++c) | ||
{ | ||
imageDirection(r + 1, c + 1) = input->GetDirection()(r, c); | ||
} | ||
} | ||
ITK_TRY_EXPECT_NO_EXCEPTION(scalarImage->SetDirection(imageDirection)); | ||
|
||
// Iteratively copy input channel values to the corresponding pixel in the 3D volume. | ||
// In this process the elevational axis of size 1 is intentionally discarded so that | ||
// we are left with axes of size > 1. | ||
using ScalarIteratorType = typename itk::ImageRegionIteratorWithIndex<ImageType>; | ||
ScalarIteratorType it(scalarImage, scalarImage->GetLargestPossibleRegion()); | ||
it.GoToBegin(); | ||
while (!it.IsAtEnd()) | ||
{ | ||
auto scalarIndex = it.GetIndex(); | ||
it.Set(input->GetPixel(itk::MakeIndex(scalarIndex[1], scalarIndex[2], 0)).GetElement(scalarIndex[0])); | ||
++it; | ||
} | ||
ITK_TEST_EXPECT_EQUAL(scalarImage->GetPixel(itk::MakeIndex(0, 0, 0)), | ||
input->GetPixel(itk::MakeIndex(0, 0, 0)).GetElement(0)); | ||
|
||
// Convert the 3D volume to a VideoStream of 2D frames for analysis. | ||
using VideoFilterType = typename itk::ImageToVideoFilter<ImageType>; | ||
VideoFilterType::Pointer videoFilter = VideoFilterType::New(); | ||
videoFilter->SetInput(scalarImage); | ||
videoFilter->SetFrameAxis(0); | ||
ITK_TRY_EXPECT_NO_EXCEPTION(videoFilter->Update()); | ||
|
||
for (size_t axis = 0; axis < VideoFilterType::OutputFrameType::ImageDimension; ++axis) | ||
{ | ||
ITK_TEST_EXPECT_EQUAL(videoFilter->GetOutput()->GetFrame(0)->GetLargestPossibleRegion().GetSize()[axis], | ||
input->GetLargestPossibleRegion().GetSize()[axis]); | ||
ITK_TEST_EXPECT_EQUAL(videoFilter->GetOutput()->GetFrame(0)->GetSpacing()[axis], input->GetSpacing()[axis]); | ||
ITK_TEST_EXPECT_EQUAL(videoFilter->GetOutput()->GetFrame(0)->GetOrigin()[axis], input->GetOrigin()[axis]); | ||
for (size_t axis2 = 0; axis2 < VideoFilterType::OutputFrameType::ImageDimension; ++axis2) | ||
{ | ||
ITK_TEST_EXPECT_EQUAL(videoFilter->GetOutput()->GetFrame(0)->GetDirection()(axis,axis2), input->GetDirection()(axis,axis2)); | ||
} | ||
} | ||
|
||
// Save the first frame to disk for verification. | ||
ITK_TRY_EXPECT_NO_EXCEPTION(itk::WriteImage(videoFilter->GetOutput()->GetFrame(0), outputFrameFileName)); | ||
|
||
return EXIT_SUCCESS; | ||
} |