-
Notifications
You must be signed in to change notification settings - Fork 1
/
csv2coco_train_val.py
161 lines (147 loc) · 5.92 KB
/
csv2coco_train_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# -*- coding: utf-8 -*-
'''
@time: 2019/01/11 11:28
spytensor
'''
import os
import json
import numpy as np
import pandas as pd
import glob
import cv2
import os
import shutil
from IPython import embed
from sklearn.model_selection import train_test_split
np.random.seed(41)
#0为背景
classname_to_id = {'Aortic enlargement':1, 'Atelectasis':2, 'Calcification':3, 'Cardiomegaly':4,
'Consolidation':5, 'ILD':6, 'Infiltration':7, 'Lung Opacity':8, 'Nodule/Mass':9,
'Other lesion':10, 'Pleural effusion':11, 'Pleural thickening':12, 'Pneumothorax':13,
'Pulmonary fibrosis':14
}
class Csv2CoCo:
def __init__(self,image_dir,total_annos):
self.images = []
self.annotations = []
self.categories = []
self.img_id = 0
self.ann_id = 0
self.image_dir = image_dir
self.total_annos = total_annos
def save_coco_json(self, instance, save_path):
json.dump(instance, open(save_path, 'w'), ensure_ascii=False, indent=2) # indent=2 更加美观显示
# 由txt文件构建COCO
def to_coco(self, keys):
self._init_categories()
for key in keys:
self.images.append(self._image(key))
shapes = self.total_annos[key]
for shape in shapes:
bboxi = []
for cor in shape[:-1]:
bboxi.append(int(cor))
label = shape[-1]
annotation = self._annotation(bboxi,label,key)
self.annotations.append(annotation)
self.ann_id += 1
self.img_id += 1
instance = {}
instance['info'] = 'Klawens created'
instance['license'] = ['license']
instance['images'] = self.images
instance['annotations'] = self.annotations
instance['categories'] = self.categories
return instance
# 构建类别
def _init_categories(self):
for k, v in classname_to_id.items():
category = {}
category['id'] = v
category['name'] = k
self.categories.append(category)
# 构建COCO的image字段
def _image(self, path):
image = {}
print(path)
img = cv2.imread(self.image_dir + path + '.jpg')
image['height'] = img.shape[0]
image['width'] = img.shape[1]
image['id'] = path
image['file_name'] = path + '.jpg'
return image
# 构建COCO的annotation字段
def _annotation(self, shape,label, path):
# label = shape[-1]
points = shape[:4]
annotation = {}
annotation['id'] = self.ann_id
annotation['image_id'] = path
annotation['category_id'] = int(classname_to_id[str(label)])
annotation['segmentation'] = self._get_seg(points)
annotation['bbox'] = self._get_box(points)
annotation['iscrowd'] = 0
annotation['area'] = self._get_area(points)
return annotation
# COCO的格式: [x1,y1,w,h] 对应COCO的bbox格式
def _get_box(self, points):
min_x = points[0]
min_y = points[1]
max_x = points[2]
max_y = points[3]
return [min_x, min_y, max_x - min_x, max_y - min_y]
# 计算面积
def _get_area(self, points):
min_x = points[0]
min_y = points[1]
max_x = points[2]
max_y = points[3]
return (max_x - min_x+1) * (max_y - min_y+1)
# segmentation
def _get_seg(self, points):
min_x = points[0]
min_y = points[1]
max_x = points[2]
max_y = points[3]
h = max_y - min_y
w = max_x - min_x
a = []
a.append([min_x,min_y, min_x,min_y+0.5*h, min_x,max_y, min_x+0.5*w,max_y, max_x,max_y, max_x,max_y-0.5*h, max_x,min_y, max_x-0.5*w,min_y])
return a
if __name__ == '__main__':
csv_file = "/home/Ubuntu/xray_jpg/train.csv"
image_dir = "/home/Ubuntu/xray_jpg/train/"
saved_coco_path = "./xray_jpg/train_val/"
# 整合csv格式标注文件
total_csv_annotations = {}
annotations = pd.read_csv(csv_file,header=None).values
for annotation in annotations:
key = annotation[0].split(os.sep)[-1]
value = np.array([annotation[1:]])
if key in total_csv_annotations.keys():
total_csv_annotations[key] = np.concatenate((total_csv_annotations[key],value),axis=0)
else:
total_csv_annotations[key] = value
# 按照键值划分数据
total_keys = list(total_csv_annotations.keys())
train_keys, val_keys = train_test_split(total_keys, test_size=0.2)
print("train_n:", len(train_keys), 'val_n:', len(val_keys))
# 创建必须的文件夹
if not os.path.exists('%scoco/annotations/'%saved_coco_path):
os.makedirs('%scoco/annotations/'%saved_coco_path)
if not os.path.exists('%scoco/images/train2017/'%saved_coco_path):
os.makedirs('%scoco/images/train2017/'%saved_coco_path)
if not os.path.exists('%scoco/images/val2017/'%saved_coco_path):
os.makedirs('%scoco/images/val2017/'%saved_coco_path)
# 把训练集转化为COCO的json格式
l2c_train = Csv2CoCo(image_dir=image_dir,total_annos=total_csv_annotations)
train_instance = l2c_train.to_coco(total_keys)
l2c_train.save_coco_json(train_instance, '%scoco/annotations/instances_train2017.json'%saved_coco_path)
for file in train_keys:
shutil.copy(image_dir+file+'.jpg',"%scoco/images/train2017/"%saved_coco_path)
for file in val_keys:
shutil.copy(image_dir+file+'.jpg',"%scoco/images/val2017/"%saved_coco_path)
# 把验证集转化为COCO的json格式
l2c_val = Csv2CoCo(image_dir=image_dir,total_annos=total_csv_annotations)
val_instance = l2c_val.to_coco(val_keys)
l2c_val.save_coco_json(val_instance, '%scoco/annotations/instances_val2017.json'%saved_coco_path)