-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
38 lines (28 loc) · 1.09 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import streamlit as st
from torch import nn
import numpy as np
from transformers import DistilBertForSequenceClassification
class ArxivModel:
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer
self.model.to('cpu')
def get_logits(self, tweet_text):
text_tokens = self.tokenizer(tweet_text, return_tensors="pt").to('cpu')
softmax = nn.Softmax(dim=1)
return softmax(self.model(**text_tokens).logits.detach()).numpy()[0]
def get_idx_class(self, tweet_text, thr=-1.0):
logits = self.get_logits(tweet_text)
if thr == -1.0:
return [(np.argmax(logits), np.max(logits))]
else:
sum_probs = 0.0
idxs = []
for p in np.argsort(logits)[::-1]:
sum_probs += logits[p]
idxs.append((p, logits[p]))
if sum_probs > thr:
return idxs
@st.cache
def load_model(path="./checkpoint-15500", num_labels=153):
return DistilBertForSequenceClassification.from_pretrained(path, num_labels=num_labels)