From 03b228f9a79dd361e4af70230de86806b7b93699 Mon Sep 17 00:00:00 2001 From: youkaichao Date: Thu, 10 Oct 2024 21:30:44 -0700 Subject: [PATCH] [misc] hide best_of from engine (#9261) Co-authored-by: Brendan Wong --- tests/entrypoints/openai/test_metrics.py | 4 --- tests/metrics/test_metrics.py | 1 - tests/tracing/test_tracing.py | 4 --- vllm/core/scheduler.py | 2 +- vllm/engine/llm_engine.py | 11 ++----- vllm/engine/metrics.py | 8 ----- vllm/engine/metrics_types.py | 1 - vllm/engine/output_processor/single_step.py | 2 +- vllm/model_executor/layers/sampler.py | 17 +++++------ vllm/outputs.py | 2 +- vllm/sampling_params.py | 33 +++++++++++---------- vllm/sequence.py | 10 +++---- vllm/tracing.py | 1 - vllm/worker/tpu_model_runner.py | 23 +++++++------- 14 files changed, 46 insertions(+), 73 deletions(-) diff --git a/tests/entrypoints/openai/test_metrics.py b/tests/entrypoints/openai/test_metrics.py index 5e9a9f8ab7d4d..6cb74eb78cbf0 100644 --- a/tests/entrypoints/openai/test_metrics.py +++ b/tests/entrypoints/openai/test_metrics.py @@ -70,7 +70,6 @@ async def client(server): [("_sum", _NUM_REQUESTS * _NUM_GENERATION_TOKENS_PER_REQUEST), ("_count", _NUM_REQUESTS)], "vllm:request_params_n": [("_count", _NUM_REQUESTS)], - "vllm:request_params_best_of": [("_count", _NUM_REQUESTS)], "vllm:prompt_tokens": [("_total", _NUM_REQUESTS * _NUM_PROMPT_TOKENS_PER_REQUEST)], "vllm:generation_tokens": @@ -151,9 +150,6 @@ async def test_metrics_counts(client: openai.AsyncOpenAI): "vllm:request_params_n_sum", "vllm:request_params_n_bucket", "vllm:request_params_n_count", - "vllm:request_params_best_of_sum", - "vllm:request_params_best_of_bucket", - "vllm:request_params_best_of_count", "vllm:num_preemptions_total", "vllm:prompt_tokens_total", "vllm:generation_tokens_total", diff --git a/tests/metrics/test_metrics.py b/tests/metrics/test_metrics.py index 23a7a85580a0a..f1003221ab518 100644 --- a/tests/metrics/test_metrics.py +++ b/tests/metrics/test_metrics.py @@ -326,7 +326,6 @@ def assert_metrics(engine: LLMEngine, disable_log_stats: bool, "vllm:e2e_request_latency_seconds", "vllm:request_prompt_tokens", "vllm:request_generation_tokens", - "vllm:request_params_best_of", "vllm:request_params_n", ] for metric_name in request_histogram_metrics: diff --git a/tests/tracing/test_tracing.py b/tests/tracing/test_tracing.py index 3cee3b890862a..64ed8e26f38ed 100644 --- a/tests/tracing/test_tracing.py +++ b/tests/tracing/test_tracing.py @@ -98,8 +98,6 @@ def test_traces(trace_service): SpanAttributes.LLM_REQUEST_TOP_P) == sampling_params.top_p assert attributes.get( SpanAttributes.LLM_REQUEST_MAX_TOKENS) == sampling_params.max_tokens - assert attributes.get( - SpanAttributes.LLM_REQUEST_BEST_OF) == sampling_params.best_of assert attributes.get(SpanAttributes.LLM_REQUEST_N) == sampling_params.n assert attributes.get(SpanAttributes.LLM_USAGE_PROMPT_TOKENS) == len( outputs[0].prompt_token_ids) @@ -155,8 +153,6 @@ def test_traces_with_detailed_steps(trace_service): SpanAttributes.LLM_REQUEST_TOP_P) == sampling_params.top_p assert attributes.get( SpanAttributes.LLM_REQUEST_MAX_TOKENS) == sampling_params.max_tokens - assert attributes.get( - SpanAttributes.LLM_REQUEST_BEST_OF) == sampling_params.best_of assert attributes.get(SpanAttributes.LLM_REQUEST_N) == sampling_params.n assert attributes.get(SpanAttributes.LLM_USAGE_PROMPT_TOKENS) == len( outputs[0].prompt_token_ids) diff --git a/vllm/core/scheduler.py b/vllm/core/scheduler.py index e930f807280f0..2d7a27d1377e4 100644 --- a/vllm/core/scheduler.py +++ b/vllm/core/scheduler.py @@ -1205,7 +1205,7 @@ def _allow_async_output_proc(self, seq_group: SequenceGroup) -> bool: # async_output_proc is allowed only when we have a single sequence # in the sequence group no_single_seq = seq_group.sampling_params is None or ( - seq_group.sampling_params.best_of == 1) + seq_group.sampling_params.n == 1) return no_single_seq def schedule( diff --git a/vllm/engine/llm_engine.py b/vllm/engine/llm_engine.py index 510ffac6f6892..563e52a37d935 100644 --- a/vllm/engine/llm_engine.py +++ b/vllm/engine/llm_engine.py @@ -767,7 +767,7 @@ def add_request( Details: - Set arrival_time to the current time if it is None. - Set prompt_token_ids to the encoded prompt if it is None. - - Create `best_of` number of :class:`~vllm.Sequence` objects. + - Create `n` number of :class:`~vllm.Sequence` objects. - Create a :class:`~vllm.SequenceGroup` object from the list of :class:`~vllm.Sequence`. - Add the :class:`~vllm.SequenceGroup` object to the scheduler. @@ -1242,8 +1242,7 @@ def _advance_to_next_step( if seq_group_metadata.do_sample: assert len(sequence_group_outputs.samples) == 1, ( "Async output processor expects a single sample" - " (i.e sampling_params.n == 1 and no " - "sampling_params.best_of > 1)") + " (i.e sampling_params.n == 1)") sample = sequence_group_outputs.samples[0] assert len(seq_group.seqs) == 1 @@ -1612,7 +1611,6 @@ def _get_stats(self, # Metadata num_prompt_tokens_requests: List[int] = [] num_generation_tokens_requests: List[int] = [] - best_of_requests: List[int] = [] n_requests: List[int] = [] finished_reason_requests: List[str] = [] @@ -1683,8 +1681,6 @@ def _get_stats(self, for seq in seq_group.get_finished_seqs() ]) if seq_group.sampling_params is not None: - best_of_requests.append( - seq_group.sampling_params.best_of) n_requests.append(seq_group.sampling_params.n) finished_reason_requests.extend([ SequenceStatus.get_finished_reason(seq.status) @@ -1737,7 +1733,6 @@ def _get_stats(self, # Metadata num_prompt_tokens_requests=num_prompt_tokens_requests, num_generation_tokens_requests=num_generation_tokens_requests, - best_of_requests=best_of_requests, n_requests=n_requests, finished_reason_requests=finished_reason_requests, ) @@ -1824,8 +1819,6 @@ def create_trace_span(self, seq_group: SequenceGroup) -> None: seq_group.sampling_params.top_p) seq_span.set_attribute(SpanAttributes.LLM_REQUEST_MAX_TOKENS, seq_group.sampling_params.max_tokens) - seq_span.set_attribute(SpanAttributes.LLM_REQUEST_BEST_OF, - seq_group.sampling_params.best_of) seq_span.set_attribute(SpanAttributes.LLM_REQUEST_N, seq_group.sampling_params.n) seq_span.set_attribute(SpanAttributes.LLM_USAGE_NUM_SEQUENCES, diff --git a/vllm/engine/metrics.py b/vllm/engine/metrics.py index 74277cae7c8ef..42acd3ea4c94c 100644 --- a/vllm/engine/metrics.py +++ b/vllm/engine/metrics.py @@ -134,12 +134,6 @@ def __init__(self, labelnames: List[str], max_model_len: int): labelnames=labelnames, buckets=build_1_2_5_buckets(max_model_len), ) - self.histogram_best_of_request = self._histogram_cls( - name="vllm:request_params_best_of", - documentation="Histogram of the best_of request parameter.", - labelnames=labelnames, - buckets=[1, 2, 5, 10, 20], - ) self.histogram_n_request = self._histogram_cls( name="vllm:request_params_n", documentation="Histogram of the n request parameter.", @@ -473,8 +467,6 @@ def _log_prometheus(self, stats: Stats) -> None: self.metrics.histogram_num_generation_tokens_request, stats.num_generation_tokens_requests) self._log_histogram(self.metrics.histogram_n_request, stats.n_requests) - self._log_histogram(self.metrics.histogram_best_of_request, - stats.best_of_requests) def _log_prometheus_interval(self, prompt_throughput: float, generation_throughput: float) -> None: diff --git a/vllm/engine/metrics_types.py b/vllm/engine/metrics_types.py index 1eccb23593408..bafd5fa1a8a82 100644 --- a/vllm/engine/metrics_types.py +++ b/vllm/engine/metrics_types.py @@ -49,7 +49,6 @@ class Stats: # Metadata num_prompt_tokens_requests: List[int] num_generation_tokens_requests: List[int] - best_of_requests: List[int] n_requests: List[int] finished_reason_requests: List[str] diff --git a/vllm/engine/output_processor/single_step.py b/vllm/engine/output_processor/single_step.py index 00d9297e41d99..cfa84077685a0 100644 --- a/vllm/engine/output_processor/single_step.py +++ b/vllm/engine/output_processor/single_step.py @@ -112,7 +112,7 @@ def _process_sequence_group_outputs(self, seq_group: SequenceGroup, outputs: SequenceGroupOutput, is_async: bool) -> None: sampling_params = seq_group.sampling_params - if sampling_params.best_of == 1: + if sampling_params.n == 1: # only have one output sample sample = outputs.samples[0] # only have one sequence diff --git a/vllm/model_executor/layers/sampler.py b/vllm/model_executor/layers/sampler.py index 0b959da79c3be..42a6a0e6b3229 100644 --- a/vllm/model_executor/layers/sampler.py +++ b/vllm/model_executor/layers/sampler.py @@ -508,7 +508,7 @@ def _random_sample( same as the length of selected_seq_groups. If the corresponding seq_group has do_sample=False, tuple contains ([], []) """ - # Find the maximum best_of value of the prompt phase requests. + # Find the maximum n value of the prompt phase requests. random_samples = random_samples.cpu() sample_idx = 0 results: SampleResultType = [] @@ -523,9 +523,9 @@ def _random_sample( num_parent_seqs = len(seq_ids) if is_prompt: # Prompt phase. - parent_ids = [0] * sampling_params.best_of + parent_ids = [0] * sampling_params.n next_token_ids = random_samples[ - sample_idx, :sampling_params.best_of].tolist() + sample_idx, :sampling_params.n].tolist() else: # Generation phase. parent_ids = list(range(num_parent_seqs)) @@ -570,7 +570,7 @@ def _beam_search_sample( is_prompt = seq_group.is_prompt seq_ids, sampling_params = seq_group.seq_ids, seq_group.sampling_params num_parent_seqs = len(seq_ids) - beam_width = sampling_params.best_of + beam_width = sampling_params.n seq_group_logprobs = logprobs[sample_idx:sample_idx + num_parent_seqs] if is_prompt: # Prompt phase. @@ -797,12 +797,11 @@ def _sample_with_torch( greedy_samples) elif sampling_type in (SamplingType.RANDOM, SamplingType.RANDOM_SEED): - max_best_of_in_batch = 1 + max_n_in_batch = 1 for seq_group in seq_groups: if seq_group.is_prompt: sampling_params = seq_group.sampling_params - max_best_of_in_batch = max(max_best_of_in_batch, - sampling_params.best_of) + max_n_in_batch = max(max_n_in_batch, sampling_params.n) seq_groups_arg = (None if sampling_type == SamplingType.RANDOM else seq_groups) @@ -812,13 +811,13 @@ def _sample_with_torch( probs[long_sample_indices], sampling_tensors.top_ks[long_sample_indices], sampling_tensors.top_ps[long_sample_indices], - max_best_of_in_batch, + max_n_in_batch, seq_groups_arg, ) else: multinomial_samples[sampling_type] = _multinomial( probs[long_sample_indices], - max_best_of_in_batch, + max_n_in_batch, seq_groups=seq_groups_arg) if sampled_token_ids_tensor is not None: diff --git a/vllm/outputs.py b/vllm/outputs.py index 4f29226aa5128..07650241cb638 100644 --- a/vllm/outputs.py +++ b/vllm/outputs.py @@ -141,7 +141,7 @@ def from_seq_group(cls, seq_group: SequenceGroup, top_n_seqs = seqs else: # Get the top-n sequences. - n = sampling_params.n + n = sampling_params._real_n or sampling_params.n sorting_key = lambda seq: seq.get_cumulative_logprob() sorted_seqs = sorted(seqs, key=sorting_key, reverse=True) top_n_seqs = sorted_seqs[:n] diff --git a/vllm/sampling_params.py b/vllm/sampling_params.py index 95345df43b57d..4f2ae75e65f3a 100644 --- a/vllm/sampling_params.py +++ b/vllm/sampling_params.py @@ -106,9 +106,8 @@ class SamplingParams( n: Number of output sequences to return for the given prompt. best_of: Number of output sequences that are generated from the prompt. From these `best_of` sequences, the top `n` sequences are returned. - `best_of` must be greater than or equal to `n`. This is treated as - the beam width when `use_beam_search` is True. By default, `best_of` - is set to `n`. + `best_of` must be greater than or equal to `n`. By default, + `best_of` is set to `n`. presence_penalty: Float that penalizes new tokens based on whether they appear in the generated text so far. Values > 0 encourage the model to use new tokens, while values < 0 encourage the model to repeat @@ -173,6 +172,7 @@ class SamplingParams( n: int = 1 best_of: Optional[int] = None + _real_n: Optional[int] = None presence_penalty: float = 0.0 frequency_penalty: float = 0.0 repetition_penalty: float = 1.0 @@ -282,7 +282,19 @@ def from_optional( ) def __post_init__(self) -> None: - self.best_of = self.best_of or self.n + # how we deal with `best_of``: + # if `best_of`` is not set, we default to `n`; + # if `best_of`` is set, we set `n`` to `best_of`, + # and set `_real_n`` to the original `n`. + # when we return the result, we will check + # if we need to return `n` or `_real_n` results + if self.best_of: + if self.best_of < self.n: + raise ValueError( + f"best_of must be greater than or equal to n, " + f"got n={self.n} and best_of={self.best_of}.") + self._real_n = self.n + self.n = self.best_of if 0 < self.temperature < _MAX_TEMP: logger.warning( "temperature %s is less than %s, which may cause numerical " @@ -329,12 +341,6 @@ def _verify_args(self) -> None: f"type {type(self.n)}") if self.n < 1: raise ValueError(f"n must be at least 1, got {self.n}.") - if not isinstance(self.best_of, int): - raise ValueError(f"best_of must be an int, but is of " - f"type {type(self.best_of)}") - if self.best_of < self.n: - raise ValueError(f"best_of must be greater than or equal to n, " - f"got n={self.n} and best_of={self.best_of}.") if not -2.0 <= self.presence_penalty <= 2.0: raise ValueError("presence_penalty must be in [-2, 2], got " f"{self.presence_penalty}.") @@ -385,7 +391,7 @@ def _verify_args(self) -> None: raise ValueError( "stop strings are only supported when detokenize is True. " "Set detokenize=True to use stop.") - if self.best_of != self.n and self.output_kind == ( + if self.best_of != self._real_n and self.output_kind == ( RequestOutputKind.DELTA): raise ValueError("best_of must equal n to use output_kind=DELTA") @@ -393,10 +399,6 @@ def _verify_greedy_sampling(self) -> None: if self.n > 1: raise ValueError("n must be 1 when using greedy sampling, " f"got {self.n}.") - assert isinstance(self.best_of, int) - if self.best_of > 1: - raise ValueError("best_of must be 1 when using greedy sampling, " - f"got {self.best_of}.") def update_from_generation_config( self, @@ -453,7 +455,6 @@ def clone(self) -> "SamplingParams": def __repr__(self) -> str: return ( f"SamplingParams(n={self.n}, " - f"best_of={self.best_of}, " f"presence_penalty={self.presence_penalty}, " f"frequency_penalty={self.frequency_penalty}, " f"repetition_penalty={self.repetition_penalty}, " diff --git a/vllm/sequence.py b/vllm/sequence.py index 51be9466e66be..3bb35ea955c8c 100644 --- a/vllm/sequence.py +++ b/vllm/sequence.py @@ -803,14 +803,14 @@ def get_max_num_running_seqs(self) -> int: """The maximum number of sequences running in parallel in the remaining lifetime of the request.""" if self.sampling_params: - best_of = self.sampling_params.best_of - assert isinstance(best_of, int) - if best_of > self.num_seqs(): + n = self.sampling_params.n + assert isinstance(n, int) + if n > self.num_seqs(): # At prompt stage, the sequence group is not yet filled up # and only have one sequence running. However, in the - # generation stage, we will have `best_of` sequences + # generation stage, we will have `n` sequences # running. - return best_of + return n # At sampling stages, return the number of actual sequences # that are not finished yet. return self.num_unfinished_seqs() diff --git a/vllm/tracing.py b/vllm/tracing.py index 31849e2b635aa..50068d8cf9c25 100644 --- a/vllm/tracing.py +++ b/vllm/tracing.py @@ -96,7 +96,6 @@ class SpanAttributes(BaseSpanAttributes): # The following span attribute names are added here because they are missing # from the Semantic Conventions for LLM. LLM_REQUEST_ID = "gen_ai.request.id" - LLM_REQUEST_BEST_OF = "gen_ai.request.best_of" LLM_REQUEST_N = "gen_ai.request.n" LLM_USAGE_NUM_SEQUENCES = "gen_ai.usage.num_sequences" LLM_LATENCY_TIME_IN_QUEUE = "gen_ai.latency.time_in_queue" diff --git a/vllm/worker/tpu_model_runner.py b/vllm/worker/tpu_model_runner.py index 12e4215038d74..b3ae5b4a9a0ce 100644 --- a/vllm/worker/tpu_model_runner.py +++ b/vllm/worker/tpu_model_runner.py @@ -49,7 +49,7 @@ class ModelInputForTPU(ModelRunnerInputBase): t: torch.Tensor p: torch.Tensor num_samples: int - best_of: List[int] + n: List[int] seq_groups: List[List[int]] is_first_multi_step: bool = True is_last_step: bool = True @@ -65,7 +65,7 @@ def as_broadcastable_tensor_dict( "t": self.t, "p": self.p, "num_samples": self.num_samples, - "best_of": self.best_of, + "n": self.n, "seq_groups": self.seq_groups, "is_first_multi_step": self.is_first_multi_step, "is_last_step": self.is_last_step, @@ -435,7 +435,7 @@ def _prepare_sample( assert len(seq_group_metadata_list) > 0 t = [] p = [] - best_of = [] + n = [] for seq_group_metadata in seq_group_metadata_list: sampling_params = seq_group_metadata.sampling_params t.append(sampling_params.temperature) @@ -448,11 +448,11 @@ def _prepare_sample( raise NotImplementedError( "Top-k sampling is currently disabled for the TPU backend " "due to performance issues.") - if sampling_params.best_of > _MAX_NUM_SAMPLES: + if sampling_params.n > _MAX_NUM_SAMPLES: raise NotImplementedError( f"Best of > {_MAX_NUM_SAMPLES} is not supported by the TPU " "backend.") - best_of.append(sampling_params.best_of) + n.append(sampling_params.n) if sampling_params.logprobs is not None: raise NotImplementedError( "logprobs is not currently supported by the TPU backend.") @@ -465,7 +465,7 @@ def _prepare_sample( num_seqs = len(seq_group_metadata.seq_data) t += [t[-1]] * (num_seqs - 1) p += [p[-1]] * (num_seqs - 1) - best_of += [best_of[-1]] * (num_seqs - 1) + n += [n[-1]] * (num_seqs - 1) num_paddings = padded_batch_size - len(t) t += [1.0] * num_paddings @@ -473,7 +473,7 @@ def _prepare_sample( t = torch.tensor(t, dtype=torch.float32, device="cpu") p = torch.tensor(p, dtype=torch.float32, device="cpu") - return t, p, best_of + return t, p, n def prepare_model_input( self, @@ -493,8 +493,8 @@ def prepare_model_input( inputs = self._prepare_decode(seq_group_metadata_list) input_tokens, input_positions, attn_metadata, input_lens = inputs padded_batch_size = input_tokens.shape[0] - t, p, best_of = self._prepare_sample(seq_group_metadata_list, - padded_batch_size) + t, p, n = self._prepare_sample(seq_group_metadata_list, + padded_batch_size) num_samples = _MAX_NUM_SAMPLES if is_prompt else 1 seq_groups = [ @@ -502,8 +502,7 @@ def prepare_model_input( for metadata in seq_group_metadata_list ] return ModelInputForTPU(input_tokens, input_positions, attn_metadata, - input_lens, t, p, num_samples, best_of, - seq_groups) + input_lens, t, p, num_samples, n, seq_groups) def make_model_input_from_broadcasted_tensor_dict( self, tensor_dict: Dict[str, Any]) -> ModelInputForTPU: @@ -609,7 +608,7 @@ def execute_model( assert len(seq_ids) == 1 seq_id = seq_ids[0] seq_outputs = [] - for j in range(model_input.best_of[i]): + for j in range(model_input.n[i]): next_token_id = next_token_ids[i][j] seq_outputs.append( SequenceOutput(seq_id, next_token_id,