-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmake_test_data.py
450 lines (407 loc) · 16.3 KB
/
make_test_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
# License: GNU Affero General Public License v3 or later
# A copy of GNU AGPL v3 should have been included in this software package in LICENSE.txt.
Generate all required intermediate objects and files for Autometa unit testing.
Once generated, each is placed in the `self.data` dict with its respective stage.
After all required objects are within `self.data`, the dictionary is written as
a json file to `test_data.json` to be read by pytest-variables during testing.
`self.data` keys and subkeys for accession with `variables` in test_*.py scripts.
1 metagenome
1.1 assembly
1.2 orfs
2 kmers
2.1 counts
2.2 am_clr_normalized_counts
3 coverage
3.1 spades_records
3.2 sam
3.3 bam
3.4 bed
3.5 fwd_reads
3.6 rev_reads
4 markers
4.1 scans
4.2 filtered_markers
4.3 orfs
5 taxonomy
5.1 prot_orfs
5.2 blastp
5.3 acc2taxid
5.4 merged
5.5 nodes
5.6 names
6 binning
6.1 kmers_normalized
6.2 kmers_embedded
6.3 taxonomy
6.4 coverage
6.5 gc_content
6.6 markers
7 summary
7.1 bin_df
"""
import gzip
import json
import os
import typing
import attr
import logging
import pandas as pd
from Bio import SeqIO
from autometa.common import kmers, markers
from autometa.common.external import hmmscan, prodigal
from autometa.taxonomy.ncbi import NCBI
import numpy as np
logger = logging.getLogger(__name__)
logging.basicConfig(
format="[%(asctime)s %(levelname)s] %(name)s: %(message)s",
datefmt="%m/%d/%Y %I:%M:%S %p",
level=logging.DEBUG,
)
def opener(fpath, mode="r"):
if fpath.endswith(".gz"):
if "r" in mode:
mode += "t"
fh = gzip.open(fpath, mode)
else:
fh = open(fpath, mode)
return fh
def subset_acc2taxids(blastp_accessions: set, ncbi: NCBI) -> dict:
acc2taxids = {}
with opener(ncbi.accession2taxid_fpath) as fh:
fh.readline() # skip reading header line
for line in fh:
acc_num, acc_ver, taxid, _ = line.split("\t")
if acc_num in blastp_accessions:
acc2taxids[acc_num] = taxid
if acc_ver in blastp_accessions:
acc2taxids[acc_ver] = taxid
return acc2taxids
@attr.s(auto_attribs=True)
class TestData:
metagenome: str
metagenome_nucl_orfs: str
metagenome_prot_orfs: str
coverage_sam: str
coverage_bed: str
fwd_reads: str
rev_read: str
markers_orfs: str
markers_scans: str
markers_filtered: str
taxonomy_ncbi: str
taxonmy_blastp: str
taxonomy_orfs: str
binning_norm_kmers: str
binning_embedded_kmers: str
binning_coverage: str
binning_gc_content: str
binning_markers: str
binning_taxonomy: str
summary_bin_df: str
recruitment_binning: str
data: typing.Dict = attr.ib(default={})
seed: int = 42
def prepare_metagenome(self, num_records: int = 4):
logger.info("Preparing metagenome records test data...")
records = {}
for record in SeqIO.parse(self.metagenome, "fasta"):
records.update({f">{record.id}": str(record.seq)})
if len(records) >= num_records:
break
try:
prodigal.run(
assembly=self.metagenome,
nucls_out=self.metagenome_nucl_orfs,
prots_out=self.metagenome_prot_orfs,
force=False,
)
except FileExistsError:
logger.debug("metagenome orfs already exist")
amino_acid_orfs = {
f">{orf.id}": str(orf.seq)
for orf in SeqIO.parse(self.metagenome_prot_orfs, "fasta")
if f">{orf.id.rsplit('_', 1)[0]}" in records
}
self.data["metagenome"] = {"assembly": records, "orfs": amino_acid_orfs}
def get_kmers(self, num_records: int = 5):
if num_records < 5:
raise ValueError(
f"At least 5 records are required for embedding tests! provided: {num_records}"
)
logger.info("Preparing kmer counts test data...")
# kmer size is 5 (b/c this is the default).
counts = kmers.count(assembly=self.metagenome, size=5)
# subset counts to `num_records`
counts = counts.sample(n=num_records, random_state=42)
# method is am_clr (b/c this is the default).
am_clr_normalized_counts = kmers.normalize(df=counts, method="am_clr")
for df in [counts, am_clr_normalized_counts]:
df.reset_index(inplace=True)
self.data["kmers"] = {
"counts": counts.to_json(),
"am_clr_normalized_counts": am_clr_normalized_counts.to_json(),
}
def get_markers(self):
logger.info("Preparing orfs for markers annotation")
try:
prodigal.run(
assembly=self.metagenome,
nucls_out=self.metagenome_nucl_orfs,
prots_out=self.metagenome_prot_orfs,
force=False,
)
except FileExistsError:
logger.debug("markers orfs already exist")
markers_query_orfs = [
record
for record in SeqIO.parse(self.metagenome_prot_orfs, "fasta")
if record.id == "NODE_1505_length_7227_cov_222.087_6"
]
if not os.path.exists(self.markers_orfs):
SeqIO.write(markers_query_orfs, self.markers_orfs, "fasta")
markers_query_orfs = {f">{rec.id}": str(rec.seq) for rec in markers_query_orfs}
logger.info("Annotating ORFs with single-copy markers")
if not os.path.exists(self.markers_scans) or not os.path.exists(
self.markers_filtered
):
self.markers_filtered = (
self.markers_filtered.replace(".gz", "")
if self.markers_filtered.endswith(".gz")
else self.markers_filtered
)
markers.get(
kingdom="archaea",
orfs=self.markers_orfs,
dbdir=markers.MARKERS_DIR,
scans=self.markers_scans,
out=self.markers_filtered,
seed=self.seed,
)
# Retrieve test output hmmscan table
scans = pd.read_csv(self.markers_scans, sep="\s+", header=None, comment="#")
filtered_markers = pd.read_csv(self.markers_filtered, sep="\t")
# The ORFs are necessary for ORF to contig translations
self.data["markers"] = {
"scans": scans.to_json(),
"filtered_markers": filtered_markers.to_json(),
"orfs": markers_query_orfs,
}
def get_taxonomy(self, num_orfs: int = 2):
logger.info("Making taxonomy test data...")
# Get diamond blastp output table
orf_column = 0
blastp = pd.read_csv(
self.taxonmy_blastp, sep="\t", index_col=orf_column, header=None
)
# Get number of unique ORFs set by `num_orfs`, default is 2.
orf_hits = set(blastp.index.unique().tolist()[:num_orfs])
blastp = blastp.loc[orf_hits]
blastp.reset_index(inplace=True)
if num_orfs == 2:
# NODE_38_length_280079_cov_224.186_1 and NODE_38_length_280079_cov_224.186_2
# together have 400 hits
assert blastp.shape == (
400,
12,
), f"shape: {blastp.shape}\ncolumns: {blastp.columns}"
blastp_query_orfs = {
f">{record.id}": str(record.seq)
for record in SeqIO.parse(self.taxonomy_orfs, "fasta")
if not record.id in orf_hits
}
ncbi = NCBI(self.taxonomy_ncbi)
# Get prot.accession2taxid datastructure and subset by taxids encountered in blastp output.
sacc_column = 1
blastp_accessions = set(blastp[sacc_column].unique().tolist())
acc2taxids = subset_acc2taxids(blastp_accessions, ncbi)
accessions = {k for k in acc2taxids.keys()}
blastp = blastp.set_index(sacc_column).loc[accessions].reset_index()
blastp = blastp.set_index(orf_column).reset_index()
assert blastp.shape[0] == len(
acc2taxids
), f"blastp shape: {blastp.shape}\tnum. acc2taxids: {len(acc2taxids)}"
# Get nodes.dmp, names.dmp and merged.dmp data structures.
nodes = ncbi.nodes
names = ncbi.names
# Merged are only necessary if taxids have been deprecated or suppressed
blastp_taxids = acc2taxids.values()
merged = {old: new for old, new in ncbi.merged.items() if old in blastp_taxids}
self.data["taxonomy"] = {
"prot_orfs": blastp_query_orfs,
"blastp": blastp.to_json(),
"acc2taxid": acc2taxids,
"merged": merged,
"nodes": nodes,
"names": names,
}
def get_bed_alignments(self, num_contigs=1):
contig_col = 0
coverages = pd.read_csv(
self.coverage_bed, sep="\t", index_col=contig_col, header=None
)
# Get number of unique contigs set by `num_contigs`, default is 1.
coverages = coverages.sample(n=num_contigs, random_state=self.seed)
coverages.reset_index(inplace=True)
# Here we are ready to send to json object self.data
return coverages
def get_sam_alignments(self, num_contigs=1):
with opener(self.coverage_sam) as fh:
lines = ""
contig = None
for line in fh:
if line.startswith("@SQ"):
# example line
# @SQ SN:NODE_1503_length_7231_cov_222.076 LN:7231
contig = line.split("\t")[1]
contig = contig.replace("SN:", "")
if line.startswith("@HD") or line.startswith("@PG") or contig in line:
# @HD and @PG are required for bam construction
lines += line
return lines
def get_reads(self, read_count=5):
reads = []
for file in [self.fwd_reads, self.rev_read]:
outlines = ""
count = 0
with opener(file) as fh:
for line in fh:
if "+" in line:
count += 1
if count >= read_count:
break
outlines += line
reads.append(outlines)
return reads
def get_coverage(self):
logging.info("Making alignment records (sam, and bed files) ...")
bed = self.get_bed_alignments()
sam = self.get_sam_alignments()
logging.info("Getting fwd and rev reads ...")
fwd_reads, rev_reads = self.get_reads()
self.data["coverage"] = {
"bed": bed.to_json(),
"sam": sam,
"fwd_reads": fwd_reads,
"rev_reads": rev_reads,
}
def get_binning(self, num_contigs: int = None):
# Need kmers, coverage, markers, taxonomy
logger.info("Preparing binning test data")
annotations = {
"kmers_normalized": self.binning_norm_kmers,
"kmers_embedded": self.binning_embedded_kmers,
"taxonomy": self.binning_taxonomy,
"coverage": self.binning_coverage,
"gc_content": self.binning_gc_content,
}
markers_df = pd.read_csv(self.binning_markers, sep="\t", index_col="contig")
contigs = None
for annotation, fpath in annotations.items():
df = pd.read_csv(fpath, sep="\t", index_col="contig")
# We'll grab the first `num_contigs` from the first dataframe (kmers)
if not contigs and num_contigs:
# We need to ensure the contigs we pull contain markers...
contigs = set(
df[df.index.isin(markers_df.index)].index.tolist()[:num_contigs]
)
if annotation == "taxonomy":
for column in df.select_dtypes(object).columns:
df[column] = df[column].map(lambda taxon: taxon.lower())
# We need to reset the index from contig to None before json export.
if contigs:
jsonified = df.loc[contigs].reset_index().to_json()
else:
jsonified = df.reset_index().to_json()
if "binning" not in self.data:
self.data["binning"] = {annotation: jsonified}
else:
self.data["binning"].update({annotation: jsonified})
markers_df.reset_index(inplace=True)
self.data["binning"].update({"markers": markers_df.to_json()})
def get_summary(self):
bin_df = pd.read_csv(self.summary_bin_df, sep="\t")
if "coverage" not in bin_df.columns:
bin_df["coverage"] = bin_df.contig.map(lambda x: x.split("_cov_")[-1])
if "gc_content" not in bin_df.columns:
bin_df["gc_content"] = np.random.random_sample(bin_df.contig.nunique())
if "length" not in bin_df.columns:
bin_df["length"] = bin_df.contig.map(
lambda x: x.split("_length_")[-1].split("_cov_")[0]
)
self.data["summary"] = {"bin_df": bin_df.to_json()}
def get_recruitment(self, num_contigs: int = None):
logger.info("Preparing recruitment binning test data")
df = pd.read_csv(self.recruitment_binning, sep="\t")
if num_contigs:
df = df.sample(n=num_contigs, random_state=self.seed)
self.data["recruitment"] = {"binning": df.to_json()}
def to_json(self, out: str):
logger.info(f"Serializing data to {out}")
with opener(out, "w") as fh:
json.dump(obj=self.data, fp=fh)
logger.info(f"Wrote test data to {out}")
def main():
outdir = os.path.join("tests", "data")
metagenome = os.path.join(outdir, "records.fna")
metagenome_nucl_orfs = os.path.join(outdir, "metagenome_nucl_orfs.fasta")
metagenome_prot_orfs = os.path.join(outdir, "metagenome_prot_orfs.fasta")
markers_orfs = os.path.join(outdir, "markers_orfs.faa")
markers_scans = os.path.join(outdir, "markers_scans.tsv.gz")
markers_filtered = os.path.join(outdir, "markers_filtered.tsv.gz")
taxonomy_ncbi = os.path.join("autometa", "databases", "ncbi")
taxonmy_blastp = os.path.join(outdir, "blastp.tsv.gz")
taxonomy_orfs = os.path.join(outdir, "taxonomy_orfs.faa")
binning_norm_kmers = os.path.join(outdir, "binning_kmers.am_clr.tsv.gz")
binning_embedded_kmers = os.path.join(outdir, "binning_kmers.am_clr.bhsne.tsv.gz")
binning_coverage = os.path.join(outdir, "binning_coverage.tsv.gz")
binning_gc_content = os.path.join(outdir, "binning_gc_content.tsv.gz")
binning_markers = os.path.join(outdir, "binning_markers.tsv.gz")
binning_taxonomy = os.path.join(outdir, "binning_taxonomy.tsv.gz")
coverage_sam = os.path.join(outdir, "records.sam.gz")
coverage_bed = os.path.join(outdir, "records.bed.gz")
fwd_reads = os.path.join(outdir, "records_1.fastq.gz")
rev_read = os.path.join(outdir, "records_2.fastq.gz")
summary_bin_df = os.path.join(outdir, "summary_bin_df.tsv.gz")
recruitment_binning = os.path.join(outdir, "recruitment_binning.tsv.gz")
test_data = TestData(
metagenome=metagenome,
metagenome_nucl_orfs=metagenome_nucl_orfs,
metagenome_prot_orfs=metagenome_prot_orfs,
markers_orfs=markers_orfs,
markers_scans=markers_scans,
markers_filtered=markers_filtered,
taxonomy_ncbi=taxonomy_ncbi,
taxonmy_blastp=taxonmy_blastp,
taxonomy_orfs=taxonomy_orfs,
binning_norm_kmers=binning_norm_kmers,
binning_embedded_kmers=binning_embedded_kmers,
binning_coverage=binning_coverage,
binning_gc_content=binning_gc_content,
binning_markers=binning_markers,
binning_taxonomy=binning_taxonomy,
coverage_sam=coverage_sam,
coverage_bed=coverage_bed,
fwd_reads=fwd_reads,
rev_read=rev_read,
summary_bin_df=summary_bin_df,
recruitment_binning=recruitment_binning,
)
# TODO: Decrease the size of the test_data.json file...
test_data.prepare_metagenome()
test_data.get_kmers()
# COMBAK: Minimize data structures for coverage test data
test_data.get_coverage()
# # COMBAK: Minimize data structures for taxonomy test data
test_data.get_taxonomy()
test_data.get_markers()
test_data.get_binning(num_contigs=0) # all contigs
test_data.get_recruitment()
test_data.get_summary()
out = os.path.join(outdir, "test_data.json")
test_data.to_json(out=out)
return
if __name__ == "__main__":
main()