-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmusic_seqgan.py
338 lines (289 loc) · 14.3 KB
/
music_seqgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import numpy as np
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
import random
from dataloader import Gen_Data_loader, Dis_dataloader
from generator import Generator
from discriminator import Discriminator
from rollout import ROLLOUT
import cPickle
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
import yaml
import shutil
import postprocessing as POST
import datetime
from tensorflow.python import debug as tf_debug
from pathos.multiprocessing import ProcessingPool as Pool
with open("SeqGAN.yaml") as stream:
try:
config = yaml.load(stream)
except yaml.YAMLError as exc:
print(exc)
os.environ['CUDA_VISIBLE_DEVICES'] = config['GPU']
#########################################################################################
# Generator Hyper-parameters
######################################################################################
EMB_DIM = config['EMB_DIM'] # embedding dimension
HIDDEN_DIM = config['HIDDEN_DIM'] # hidden state dimension of lstm cell
SEQ_LENGTH = config['SEQ_LENGTH'] # sequence length
START_TOKEN = config['START_TOKEN']
PRE_GEN_EPOCH = config['PRE_GEN_EPOCH'] # supervise (maximum likelihood estimation) epochs for generator
PRE_DIS_EPOCH = config['PRE_DIS_EPOCH'] # supervise (maximum likelihood estimation) epochs for discriminator
SEED = config['SEED']
BATCH_SIZE = config['BATCH_SIZE']
ROLLOUT_UPDATE_RATE = config['ROLLOUT_UPDATE_RATE']
GENERATOR_LR = config['generator_lr']
REWARD_GAMMA = config['reward_gamma']
#########################################################################################
# Discriminator Hyper-parameters
#########################################################################################
dis_embedding_dim = config['dis_embedding_dim']
dis_filter_sizes = config['dis_filter_sizes']
dis_num_filters = config['dis_num_filters']
dis_dropout_keep_prob = config['dis_dropout_keep_prob']
dis_l2_reg_lambda = config['dis_l2_reg_lambda']
dis_batch_size = config['dis_batch_size']
#########################################################################################
# Basic Training Parameters
#########################################################################################
TOTAL_BATCH = config['TOTAL_BATCH']
# vocab size for our custom data
vocab_size = config['vocab_size']
# positive data, containing real music sequences
positive_file = config['positive_file']
# negative data from the generator, containing fake sequences
negative_file = config['negative_file']
valid_file = config['valid_file']
generated_num = config['generated_num']
epochs_generator = config['epochs_generator']
epochs_discriminator = config['epochs_discriminator']
def generate_samples(sess, trainable_model, batch_size, generated_num, output_file):
# unconditinally generate random samples
# it is used for test sample generation & negative data generation
# called per D learning phase
# Generate Samples
generated_samples = []
for _ in range(int(generated_num / batch_size)):
generated_samples.extend(trainable_model.generate(sess))
# dump the pickle data
with open(output_file, 'wb') as fp:
cPickle.dump(generated_samples, fp, protocol=2)
def pre_train_epoch(sess, trainable_model, data_loader):
# Pre-train the generator using MLE for one epoch
# independent of D, the standard RNN learning
supervised_g_losses = []
data_loader.reset_pointer()
for it in xrange(data_loader.num_batch):
batch = data_loader.next_batch()
_, g_loss = trainable_model.pretrain_step(sess, batch)
supervised_g_losses.append(g_loss)
return np.mean(supervised_g_losses)
# new implementations
def calculate_train_loss_epoch(sess, trainableav_model, data_loader):
# calculate the train loss for the generator
# same for pre_train_epoch, but without the supervised grad update
# used for observing overfitting and stability of the generator
supervised_g_losses = []
data_loader.reset_pointer()
for it in xrange(data_loader.num_batch):
batch = data_loader.next_batch()
# note the newly implementated method call for the model
# calculate_nll_loss_step calculate the node up to g_loss, but does not calculate the update node
g_loss = trainable_model.calculate_nll_loss_step(sess, batch)
supervised_g_losses.append(g_loss)
return np.mean(supervised_g_losses)
def calculate_bleu(sess, trainable_model, data_loader):
# bleu score implementation
# used for performance evaluation for pre-training & adv. training
# separate true dataset to the valid set
# conditionally generate samples from the start token of the valid set
# measure similarity with nltk corpus BLEU
smoother = SmoothingFunction()
data_loader.reset_pointer()
bleu_avg = 0
references = []
hypotheses = []
for it in xrange(data_loader.num_batch):
batch = data_loader.next_batch()
# predict from the batch
# TODO: which start tokens?
#start_tokens = batch[:, 0]
start_tokens = np.array([START_TOKEN] * BATCH_SIZE, dtype=np.int64)
prediction = trainable_model.predict(sess, batch, start_tokens)
# argmax to convert to vocab
#prediction = np.argmax(prediction, axis=2)
# cast batch and prediction to 2d list of strings
batch_list = batch.astype(np.str).tolist()
pred_list = prediction.astype(np.str).tolist()
references.extend(batch_list)
hypotheses.extend(pred_list)
bleu = 0.
# calculate bleu for each predicted seq
# compare each predicted seq with the entire references
# this is slow, use multiprocess
def calc_sentence_bleu(hypothesis):
return sentence_bleu(references, hypothesis, smoothing_function=smoother.method4)
if __name__ == '__main__':
p = Pool()
result = (p.map(calc_sentence_bleu, hypotheses))
bleu = np.mean(result)
return bleu
def main():
random.seed(SEED)
np.random.seed(SEED)
# data loaders declaration
# loaders for generator, discriminator, and additional validation data loader
gen_data_loader = Gen_Data_loader(BATCH_SIZE)
dis_data_loader = Dis_dataloader(BATCH_SIZE)
eval_data_loader = Gen_Data_loader(BATCH_SIZE)
# define generator and discriminator
# general structures are same with the original model
# learning rates for generator needs heavy tuning for general use
# l2 reg for D & G also affects performance
generator = Generator(vocab_size, BATCH_SIZE, EMB_DIM, HIDDEN_DIM, SEQ_LENGTH, START_TOKEN, GENERATOR_LR, REWARD_GAMMA)
discriminator = Discriminator(sequence_length=SEQ_LENGTH, num_classes=2, vocab_size=vocab_size, embedding_size=dis_embedding_dim,
filter_sizes=dis_filter_sizes, num_filters=dis_num_filters, l2_reg_lambda=dis_l2_reg_lambda)
# VRAM limitation for efficient deployment
tf_config = tf.ConfigProto()
tf_config.gpu_options.allow_growth = True
sess = tf.Session(config=tf_config)
sess.run(tf.global_variables_initializer())
# define saver
saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=1)
# generate real data from the true dataset
gen_data_loader.create_batches(positive_file)
# generate real validation data from true validation dataset
eval_data_loader.create_batches(valid_file)
time = str(datetime.datetime.now())[:-7]
log = open('save/experiment-log' + str(time) + '.txt', 'w')
log.write(str(config)+'\n')
log.write('D loss: original\n')
log.flush()
#summary_writer = tf.summary.FileWriter('save/tensorboard/', graph=tf.get_default_graph())
if config['pretrain'] == True:
# pre-train generator
print 'Start pre-training...'
log.write('pre-training...\n')
for epoch in xrange(PRE_GEN_EPOCH):
# calculate the loss by running an epoch
loss = pre_train_epoch(sess, generator, gen_data_loader)
# measure bleu score with the validation set
bleu_score = calculate_bleu(sess, generator, eval_data_loader)
# since the real data is the true data distribution, only evaluate the pretraining loss
# note the absence of the oracle model which is meaningless for general use
buffer = 'pre-train epoch: ' + str(epoch) + ' pretrain_loss: ' + str(loss) + ' bleu: ' + str(bleu_score)
print(buffer)
log.write(buffer + '\n')
log.flush()
# generate 5 test samples per epoch
# it automatically samples from the generator and postprocess to midi file
# midi files are saved to the pre-defined folder
if epoch == 0:
generate_samples(sess, generator, BATCH_SIZE, generated_num, negative_file)
POST.main(negative_file, 5, str(-1)+'_vanilla_', 'midi')
elif epoch == PRE_GEN_EPOCH - 1:
generate_samples(sess, generator, BATCH_SIZE, generated_num, negative_file)
POST.main(negative_file, 5, str(-PRE_GEN_EPOCH)+'_vanilla_', 'midi')
print 'Start pre-training discriminator...'
# Train 3 epoch on the generated data and do this for 50 times
# this trick is also in spirit of the original work, but the epoch strategy needs tuning
for epochs in range(PRE_DIS_EPOCH):
generate_samples(sess, generator, BATCH_SIZE, generated_num, negative_file)
D_loss = 0
for _ in range(3):
dis_data_loader.load_train_data(positive_file, negative_file)
dis_data_loader.reset_pointer()
for it in xrange(dis_data_loader.num_batch):
x_batch, y_batch = dis_data_loader.next_batch()
feed = {
discriminator.input_x: x_batch,
discriminator.input_y: y_batch,
discriminator.dropout_keep_prob: dis_dropout_keep_prob
}
_ = sess.run(discriminator.train_op, feed)
D_loss += discriminator.loss.eval(feed, session=sess)
buffer = 'epoch: ' + str(epochs+1) + ' D loss: ' + str(D_loss/dis_data_loader.num_batch/3)
print(buffer)
log.write(buffer + '\n')
log.flush()
# save the pre-trained checkpoint for future use
# if one wants adv. training only, comment out the pre-training section after the save
save_checkpoint(sess, saver,PRE_GEN_EPOCH, PRE_DIS_EPOCH)
# define rollout target object
# the second parameter specifies target update rate
# the higher rate makes rollout "conservative", with less update from the learned generator
# we found that higher update rate stabilized learning, constraining divergence of the generator
rollout = ROLLOUT(generator, ROLLOUT_UPDATE_RATE)
print '#########################################################################'
print 'Start Adversarial Training...'
log.write('adversarial training...\n')
if config['pretrain'] == False:
# load checkpoint of pre-trained model
load_checkpoint(sess, saver)
# 0.001 to 0.01
if config['x10adv_g'] == True:
generator.learning_rate *= 10
for total_batch in range(TOTAL_BATCH):
G_loss = 0
# Train the generator for one step
for it in range(epochs_generator):
samples = generator.generate(sess)
rewards = rollout.get_reward(sess, samples, config['rollout_num'], discriminator)
feed = {generator.x: samples, generator.rewards: rewards}
_ = sess.run(generator.g_updates, feed_dict=feed)
G_loss += generator.g_loss.eval(feed, session=sess)
# Update roll-out parameters
rollout.update_params()
# Train the discriminator
D_loss = 0
for _ in range(epochs_discriminator):
generate_samples(sess, generator, BATCH_SIZE, generated_num, negative_file)
for _ in range(config['epochs_discriminator_multiplier']):
dis_data_loader.load_train_data(positive_file, negative_file)
dis_data_loader.reset_pointer()
for it in xrange(dis_data_loader.num_batch):
x_batch, y_batch = dis_data_loader.next_batch()
feed = {
discriminator.input_x: x_batch,
discriminator.input_y: y_batch,
discriminator.dropout_keep_prob: dis_dropout_keep_prob
}
_ = sess.run(discriminator.train_op, feed)
D_loss += discriminator.loss.eval(feed, session=sess)
# measure stability and performance evaluation with bleu score
bleu_score = calculate_bleu(sess, generator, eval_data_loader)
buffer = 'epoch: ' + str(total_batch+1) + \
', G_adv_loss: %.12f' % (G_loss/epochs_generator) + \
', D loss: %.12f' % (D_loss/epochs_discriminator/config['epochs_discriminator_multiplier']) + \
', bleu score: %.12f' % bleu_score
print(buffer)
log.write(buffer + '\n')
log.flush()
if config['infinite_loop'] is True:
if bleu_score < config['loop_threshold']:
buffer = 'Mode collapse detected, restarting from pretrained model...'
print(buffer)
log.write(buffer + '\n')
log.flush()
load_checkpoint(sess, saver)
# generate random test samples and postprocess the sequence to midi file
generate_samples(sess, generator, BATCH_SIZE, generated_num, negative_file)
POST.main(negative_file, 5, str(total_batch)+'_vanilla_', 'midi')
log.close()
# methods for loading and saving checkpoints of the model
def load_checkpoint(sess, saver):
#ckpt = tf.train.get_checkpoint_state('save')
#if ckpt and ckpt.model_checkpoint_path:
#saver.restore(sess, tf.train.latest_checkpoint('save'))
ckpt = 'pretrain_g'+str(config['PRE_GEN_EPOCH'])+'_d'+str(config['PRE_DIS_EPOCH'])+'_vanilla.ckpt'
saver.restore(sess, './save/' + ckpt)
print 'checkpoint {} loaded'.format(ckpt)
return
def save_checkpoint(sess, saver, g_ep, d_ep):
checkpoint_path = os.path.join('save', 'pretrain_g'+str(g_ep)+'_d'+str(d_ep)+'_vanilla.ckpt')
saver.save(sess, checkpoint_path)
print("model saved to {}".format(checkpoint_path))
return
if __name__ == '__main__':
main()