Quantum field theory - NPAC M. Cacciari and S. Descotes-Genon

QFT in a nutshell [M. Cacciari]

A1. Recap of special relativity

Change of frame, four vectors, boosts Relativistic kinematics Decay in two, three bodies Two-body reactions, phase space and flux, cross section

A2. Introduction to spin 0, 1/2, 1 particles

Klein-Gordon lagrangian Notion of spin, helicity, polarisation Dirac and Electromagnetism lagrangians

A3. Dirac equation

Dirac equation and its solutions Diracology Illustration: g-2 (first order)

A4. QED

Gauge invariance, covariant derivative Coupling of photon to fermions Feynman rules First applications: e.m. potential

A5. e+ e- -> mu+ mu-

Computation with trace identities Angular analysis Helicity analysis Non-relativistic and ultrarelativistic limits Crossing symmetry

A6. Electron-photon interaction

Compton scattering Bhabha scattering Soft bremsstrahlung Infrared and collinear divergencies

A7. Vacuum polarisation 1

Notion of self-energy One-loop computation Notion of regularisation Implementations: dimensional regularisation, alternatives

A8. Vacuum polarisation 2

Renormalisation Renormalisation group equation Consequences for coupling constant

A9. QCD

Elements of group theory and gauge invariance QCD lagrangian, Feynman rules, colour algebra R(e+e- -> hadrons) at tree level Vacuum polarisation for gluons, running of alpha_s Deep Inelastic scattering, Drell-Yan, PDFs Notion of ghosts

A10. Standard Model

Basic elements Lagrangian Feynman rules for weak bosons and Higgs Illustrations : gg -> top loop -> H

Fundations of QFT [S. Descotes-Genon]

B1. Lagrangian and symmetries

QFT view point Lagrangian, action, Euler-Lagrange equations Continuous symmetries and discrete symmetries Noether theorem

B2. Spin 0 particles

Quantisation of real and complex Klein Gordon fields Propagator Particle creation from a classical source Notion of antiparticle

B3. Spin 1/2 particles

Dirac equation Quantisation and spin-statistics theorem Dirac propagator Discrete symmetries of Dirac theory

B4. Interacting fields

S-matrix and perturbation theory Wick theorem Feynman diagrams : principle and combinatorics Combinatorics of Feynman diagrams Illustration with (g-2)_muon

B5. Path integral and functional methods

Path integral in quantum mechanics Functional quantisation of scalar fields Symmetries in functional formalism

B6. Renormalisation

Concepts Ultraviolet divergences and power counting Renormalisation group equations Structure of QED at one loop and role of symmetries Renormalisability and effective theories

B7. Symmetry breaking

Position of the problem in the Standard Model Explicit and spontaneous symmetry breaking Global symmetry breaking: Goldstone theorem and low-energy QCD Spontaneous symmetry breaking: Higgs mechanism abelian example

B8. Standard Model (1)

Electroweak symmetry breaking Higgs field and its potential Gauge boson masses and custodial symmetry

B9. Standard Model (2)

Coupling to fermions CKM and PMNS matrices Symmetries of the Standard Model

B10. Formal developments

Standard Model at one loop Unitarity, optical theorem, ghosts Anomalies Unification

Bibliography

An Introduction to Quantum Field Theory, Michael E. Peskin and Daniel V. Schroeder, Addison Wesley Gauge Theories in Particle Physics (vols I and II), I. J. R. Aitchison and A. J. G. Hey, CRC Press/Taylor and Francis Quantum Field Theory in a Nutshell, A. Zee, Princeton Univ Press An introduction to Quantum Field Theory, G. Sterman, Cambridge Univ. Press The Quantum Theory of Fields (vols 1 and 2), S. Weinberg, Cambridge Univ. Press