-
Notifications
You must be signed in to change notification settings - Fork 18
/
exe_aqi36.py
91 lines (76 loc) · 2.98 KB
/
exe_aqi36.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import argparse
import torch
import datetime
import json
import yaml
import os
import logging
import numpy as np
from dataset_aqi36 import get_dataloader
from main_model import PriSTI_aqi36
from utils import train, evaluate
def main(args):
SEED = args.seed
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
path = "config/" + args.config
with open(path, "r") as f:
config = yaml.safe_load(f)
config["model"]["is_unconditional"] = args.unconditional
config["model"]["target_strategy"] = args.targetstrategy
config["diffusion"]["adj_file"] = 'AQI36'
config["seed"] = SEED
print(json.dumps(config, indent=4))
current_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
foldername = (
"./save/pm25_outsample_" + current_time + "/"
)
print('model folder:', foldername)
os.makedirs(foldername, exist_ok=True)
with open(foldername + "config.json", "w") as f:
json.dump(config, f, indent=4)
train_loader, valid_loader, test_loader, scaler, mean_scaler = get_dataloader(
config["train"]["batch_size"], device=args.device, val_len=args.val_len,
is_interpolate=config["model"]["use_guide"], num_workers=args.num_workers,
target_strategy=args.targetstrategy, mask_sensor=config["model"]["mask_sensor"]
)
model = PriSTI_aqi36(config, args.device).to(args.device)
if args.modelfolder == "":
train(
model,
config["train"],
train_loader,
valid_loader=valid_loader,
foldername=foldername,
)
else:
model.load_state_dict(torch.load("./save/" + args.modelfolder + "/model.pth", map_location=args.device))
logging.basicConfig(filename=foldername + '/test_model.log', level=logging.DEBUG)
logging.info("model_name={}".format(args.modelfolder))
evaluate(
model,
test_loader,
nsample=args.nsample,
scaler=scaler,
mean_scaler=mean_scaler,
foldername=foldername,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="PriSTI")
parser.add_argument("--config", type=str, default="base.yaml")
parser.add_argument('--device', default='cuda:0', help='Device for Attack')
parser.add_argument('--num_workers', type=int, default=16, help='Device for Attack')
parser.add_argument("--modelfolder", type=str, default="")
parser.add_argument(
"--targetstrategy", type=str, default="hybrid", choices=["hybrid", "random", "historical"]
)
parser.add_argument(
"--val_len", type=float, default=0.1, help="the ratio of data used for validation (value:[0-1])"
)
parser.add_argument("--nsample", type=int, default=100)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--unconditional", action="store_true")
args = parser.parse_args()
print(args)
main(args)