If you find Stereo Plane R-CNN useful in your academic work please cite the following paper:
@article{wietrzykowski2022,
author={Wietrzykowski, Jan and Belter, Dominik},
journal={IEEE Robotics and Automation Letters},
title={{Stereo Plane R-CNN: Accurate Scene Geometry Reconstruction Using Planar Segments and Camera-Agnostic Representation}},
year={2022},
volume={7},
number={2},
pages={4345-4352},
doi={10.1109/LRA.2022.3150841}
}
Clone the repository:
git clone https://github.com/LRMPUT/sprcnn.git
Create a new Conda environment and install required dependencies:
conda install pytorch torchvision torchaudio torchmetrics cudatoolkit=11.1 numpy scikit-image scipy numpy -c pytorch-lts -c nvidia
Install other depencencies using Pip:
pip install opencv-python disjoint-set pytorch-lightning
The SceneNet Stereo
dataset can be downloaded here.
The TERRINet
dataset can be downloaded here.
python train_planercnn.py --dataFolder=/mnt/data/datasets/scenenet_rgbd --anchorType=none_exp_plane_params --normWeight=100.0 --dispWeight=1.0 --LR=0.00001 --numEpochs=10
Pretrained model can be downloaded here.
python evaluate.py --anchorType=none_exp_plane_params --dataFolder=/mnt/data/datasets/TERRINet --checkpoint=/mnt/data/datasets/scenenet_rgbd/checkpoint/plane_params.ckpt --no_normals
Before running the following command, make sure that contents of annotations_plane_params_det
dir in each scene directory is empty.
python evaluate.py --anchorType=none_exp_plane_params --dataFolder=/mnt/data/datasets/TERRINet --checkpoint=/mnt/data/datasets/scenenet_rgbd/checkpoint/plane_params.ckpt --no_normals --export_detections
Detections should be exported to annotations_plane_params_det
dir in each scene directory.
Our implementation is based on Plane R-CNN.