-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_cnn.py
171 lines (134 loc) · 5.94 KB
/
train_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python
import numpy as np
import chainer
import chainer.functions as F
import chainer.links as L
import chainer.datasets.image_dataset as ImageDataset
import six
import os
from PIL import Image
from chainer import cuda, optimizers, serializers, Variable
from chainer import training
from chainer.training import extensions
import argparse
import generator
from rough2lineDataset import Rough2LineDataset
from training_visualizer import test_samples_simplification
#chainer.cuda.set_max_workspace_size(1024 * 1024 * 1024)
os.environ["CHAINER_TYPE_CHECK"] = "0"
def main():
parser = argparse.ArgumentParser(
description='chainer line drawing colorization')
parser.add_argument('--batchsize', '-b', type=int, default=16,
help='Number of images in each mini-batch')
parser.add_argument('--epoch', '-e', type=int, default=500,
help='Number of sweeps over the dataset to train')
parser.add_argument('--gpu', '-g', type=int, default=-1,
help='GPU ID (negative value indicates CPU)')
parser.add_argument('--dataset', '-i', default='./images/',
help='Directory of image files.')
parser.add_argument('--out', '-o', default='result_cnn',
help='Directory to output the result')
parser.add_argument('--resume', '-r', default='',
help='Resume the training from snapshot')
parser.add_argument('--seed', type=int, default=0,
help='Random seed')
parser.add_argument('--snapshot_interval', type=int, default=1000,
help='Interval of snapshot')
parser.add_argument('--display_interval', type=int, default=10,
help='Interval of displaying log to console')
parser.add_argument('--test_visual_interval', type=int, default=500,
help='Interval of drawing test images')
parser.add_argument('--test_out', default='./test_result/',
help='DIrectory to output test samples')
parser.add_argument('--test_image_path', default='./test_samples/',
help='Directory of image files for testing')
args = parser.parse_args()
print('GPU: {}'.format(args.gpu))
print('# Minibatch-size: {}'.format(args.batchsize))
print('# epoch: {}'.format(args.epoch))
print('')
root = args.dataset
#model = "./model_paint"
gen = generator.GEN()
serializers.load_npz("result_cnn1/gen_iter_4000", gen)
print('generator loaded')
dataset = Rough2LineDataset(
"dat/rough_line_train.dat", root + "rough/", root + "line/", train=True, size = 328)
train_iter = chainer.iterators.SerialIterator(dataset, args.batchsize)
if args.gpu >= 0:
chainer.cuda.get_device(args.gpu).use() # Make a specified GPU current
gen.to_gpu() # Copy the model to the GPU
# Setup optimizer parameters.
opt = optimizers.Adam(alpha=0.0001)
opt.setup(gen)
opt.add_hook(chainer.optimizer.WeightDecay(1e-5), 'hook_gen')
# Set up a trainer
updater = cnnUpdater(
models=(gen),
iterator={
'main': train_iter,
#'test': test_iter
},
optimizer={
'gen': opt,},
device=args.gpu)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
snapshot_interval = (args.snapshot_interval, 'iteration')
snapshot_interval2 = (args.snapshot_interval * 2, 'iteration')
trainer.extend(extensions.dump_graph('gen/loss'))
trainer.extend(extensions.snapshot(), trigger=snapshot_interval2)
trainer.extend(extensions.snapshot_object(
gen, 'gen_iter_{.updater.iteration}'), trigger=snapshot_interval)
#trainer.extend(extensions.snapshot_object(
# dis, 'gen_dis_iter_{.updater.iteration}'), trigger=snapshot_interval)
trainer.extend(extensions.snapshot_object(
opt, 'optimizer_'), trigger=snapshot_interval)
trainer.extend(extensions.LogReport(trigger=(10, 'iteration'), ))
trainer.extend(extensions.PrintReport(
['epoch', 'gen/loss', 'gen/loss_L']))
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.extend(test_samples_simplification(updater, gen, args.test_out, args.test_image_path),
trigger=(args.test_visual_interval, 'iteration'))
trainer.run()
if args.resume:
# Resume from a snapshot
chainer.serializers.load_npz(args.resume, trainer)
# Save the trained model
chainer.serializers.save_npz(os.path.join(out, 'model_final'), gen)
chainer.serializers.save_npz(os.path.join(out, 'optimizer_final'), opt)
class cnnUpdater(chainer.training.StandardUpdater):
def __init__(self, *args, **kwargs):
self.gen = kwargs.pop('models')
self._iter = 0
super(cnnUpdater, self).__init__(*args, **kwargs)
# 0 for dataset
# 1 for fake
# G_out: output of Generator
# gt: ground truth
def loss_gen(self, gen, G_out, gt, batchsize, alpha=1):
xp = self.gen.xp
loss_L = F.mean_squared_error(G_out, gt) * G_out.data.size
loss = loss_L #+ alpha * loss_adv
chainer.report({'loss': loss, "loss_L": loss_L}, gen)
return loss
def update_core(self):
xp = self.gen.xp
self._iter += 1
batch = self.get_iterator('main').next()
batchsize = len(batch)
w_in = 328
w_out = 328
x_in = xp.zeros((batchsize, 1, w_in, w_in)).astype("f")
gt = xp.zeros((batchsize, 1, w_out, w_out)).astype("f")
for i in range(batchsize):
x_in[i, :] = xp.asarray(batch[i][0])
gt[i, :] = xp.asarray(batch[i][1])
x_in = Variable(x_in)
gt = Variable(gt)
G_out = self.gen(x_in, test=False)
gen_optimizer = self.get_optimizer('gen')
gen_optimizer.update(self.loss_gen, self.gen, G_out, gt, batchsize)
G_out.unchain_backward()
if __name__ == '__main__':
main()