-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain.py
185 lines (148 loc) · 7.82 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from utils.utils import *
from model import *
from dataloader import *
from model import BertForModel
from transformers import WEIGHTS_NAME, CONFIG_NAME, logging
import warnings
from init_parameter import init_model
class PretrainModelManager:
def __init__(self, args, data):
set_seed(args.seed)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model = BertForModel(args.bert_model, num_labels=data.n_known_cls)
self.model.to(self.device)
self.num_train_optimization_steps = int(
len(data.train_labeled_examples) / args.train_batch_size) * args.num_pretrain_epochs
self.optimizer, self.scheduler = self.get_optimizer(args)
self.best_eval_score = 0
def eval(self, args, data):
self.model.eval()
total_labels = torch.empty(0, dtype=torch.long).to(self.device)
total_logits = torch.empty((0, data.n_known_cls)).to(self.device)
for batch in tqdm(data.eval_dataloader, desc="pre-training-eval"):
batch = tuple(t.to(self.device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
X = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": segment_ids}
with torch.set_grad_enabled(False):
_, logits = self.model(X)
total_labels = torch.cat((total_labels, label_ids))
total_logits = torch.cat((total_logits, logits))
total_probs, total_preds = F.softmax(total_logits.detach(), dim=1).max(dim=1)
y_pred = total_preds.cpu().numpy()
y_true = total_labels.cpu().numpy()
acc = round(accuracy_score(y_true, y_pred) * 100, 2)
return acc
def train(self, args, data):
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
wait = 0
best_model = None
mlm_iter = iter(data.train_semi_dataloader)
for epoch in range(int(args.num_pretrain_epochs)):
print('---------------------------')
print(f'pre-training epoch:{epoch}')
self.model.train()
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(data.train_labeled_dataloader, desc="Pre-training")):
batch = tuple(t.to(self.device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
X = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": segment_ids}
try:
batch = mlm_iter.next()
batch = tuple(t.to(self.device) for t in batch)
input_ids, input_mask, segment_ids, labels = batch
except StopIteration:
mlm_iter = iter(data.train_semi_dataloader)
batch = mlm_iter.next()
batch = tuple(t.to(self.device) for t in batch)
input_ids, input_mask, segment_ids, labels = batch
X_mlm = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": segment_ids}
mask_ids, mask_lb = mask_tokens(X_mlm['input_ids'].cpu(), tokenizer)
X_mlm["input_ids"] = mask_ids.to(self.device)
with torch.set_grad_enabled(True):
features, logits = self.model(X)
features = F.normalize(features, dim=1)
if isinstance(self.model, nn.DataParallel):
loss_src = self.model.module.loss_ce(logits, label_ids)
loss_mlm = self.model.module.mlmForward(X_mlm, mask_lb.to(self.device))
else:
loss_src = self.model.loss_ce(logits, label_ids)
loss_mlm = self.model.mlmForward(X_mlm, mask_lb.to(self.device))
lossTOT = loss_src + loss_mlm
lossTOT.backward()
nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
tr_loss += lossTOT.item()
self.optimizer.step()
self.scheduler.step()
self.optimizer.zero_grad()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
loss = tr_loss / nb_tr_steps
eval_score = self.eval(args, data)
print(f'train_loss:{loss}, eval_score:{eval_score}')
if eval_score > self.best_eval_score:
best_model = copy.deepcopy(self.model)
wait = 0
self.best_eval_score = eval_score
else:
wait += 1
if wait >= args.pre_wait_patient:
break
self.model = best_model
if args.save_model:
self.save_model(args)
def get_optimizer(self, args):
num_warmup_steps = int(args.warmup_proportion * self.num_train_optimization_steps)
param_optimizer = list(self.model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.lr_pre)
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=self.num_train_optimization_steps)
return optimizer, scheduler
def get_features_labels(self, dataloader, model, args):
model.eval()
total_features = torch.empty((0, args.feat_dim)).to(self.device)
total_labels = torch.empty(0, dtype=torch.long).to(self.device)
for batch in tqdm(dataloader, desc="Extracting representation for clustering"):
batch = tuple(t.to(self.device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
X = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": segment_ids}
with torch.no_grad():
feature, _ = model(X, output_hidden_states=True)
total_features = torch.cat((total_features, feature))
total_labels = torch.cat((total_labels, label_ids))
return total_features, total_labels
def evaluation(self, args, data):
feats, labels = self.get_features_labels(data.test_dataloader, self.model, args)
feats = feats.cpu().numpy()
km = KMeans(n_clusters=data.num_labels, n_init=20).fit(feats)
y_pred = km.labels_
y_true = labels.cpu().numpy()
results = clustering_score(y_true, y_pred, data.known_lab)
print('results', results)
def load_model(self, args):
model_file = os.path.join(args.dataset, args.pretrain_dir + '_' + str(args.seed), 'premodel.pth')
self.model.load_state_dict(torch.load(model_file))
def save_model(self, args):
file_dir = os.path.join(args.dataset, args.pretrain_dir + '_' + str(args.seed))
if not os.path.exists(file_dir):
os.makedirs(file_dir)
model_file = os.path.join(args.dataset, args.pretrain_dir + '_' + str(args.seed), 'premodel.pth')
torch.save(self.model.state_dict(), model_file)
if __name__ == '__main__':
warnings.filterwarnings('ignore')
logging.set_verbosity_error()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
print('Data and Parameters Initialization...')
parser = init_model()
args = parser.parse_args()
data = Data(args)
print('Pre-training begin...')
manager_pre = PretrainModelManager(args, data)
manager_pre.train(args, data)
print('Pre-training finished!')