-
Notifications
You must be signed in to change notification settings - Fork 2
/
gfx.frag
1175 lines (1010 loc) · 35.9 KB
/
gfx.frag
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Endeavor by Team210 - 64k intro by Team210 at Revision 2k19
* Copyright (C) 2018 Alexander Kraus <nr4@z10.info>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#version 330
float iScale, iNBeats = 0.;
uniform float iTime, iFontWidth, iSequenceWidth, iExecutableSize;
uniform vec2 iResolution;
uniform sampler2D iFont, iSequence;
uniform int iFSAA, iTXAA;
// Global constants
const vec3 c = vec3(1.,0.,-1.);
const float pi = acos(-1.);
float a; // Aspect ratio
// Read short value from texture at index off
float rshort(float off)
{
// Parity of offset determines which byte is required.
float hilo = mod(off, 2.);
// Find the pixel offset your data is in (2 unsigned shorts per pixel).
off *= .5;
// - Determine texture coordinates.
// offset = i*iFontWidth+j for (i,j) in [0,iFontWidth]^2
// floor(offset/iFontWidth) = floor((i*iFontwidth+j)/iFontwidth)
// = floor(i)+floor(j/iFontWidth) = i
// mod(offset, iFontWidth) = mod(i*iFontWidth + j, iFontWidth) = j
// - For texture coordinates (i,j) has to be rescaled to [0,1].
// - Also we need to add an extra small offset to the texture coordinate
// in order to always "hit" the right pixel. Pixel width is
// 1./iFontWidth.
// Half of it is in the center of the pixel.
vec2 ind = (vec2(mod(off, iFontWidth), floor(off/iFontWidth))+.05)/iFontWidth;
// Get 4 bytes of data from the texture
vec4 block = texture(iFont, ind);
// Select the appropriate word
vec2 data = mix(block.rg, block.ba, hilo);
// Convert bytes to unsigned short. The lower bytes operate on 255,
// the higher bytes operate on 65280, which is the maximum range
// of 65535 minus the lower 255.
return round(dot(vec2(255., 65280.), data));
}
// Read float value from texture at index off
float rfloat(float off)
{
// Convert the bytes to unsigned short as first step.
float d = rshort(off);
// Convert bytes to IEEE 754 float16. That is
// 1 sign bit, 5 bit exponent, 11 bit mantissa.
// Also it has a weird conversion rule that is not evident at all.
float sign = floor(d/32768.),
exponent = floor(d/1024.-sign*32.),
significand = d-sign*32768.-exponent*1024.;
// Return full float16
if(exponent == 0.)
return mix(1., -1., sign) * 5.960464477539063e-08 * significand;
return mix(1., -1., sign) * (1. + significand * 9.765625e-4) * pow(2.,exponent-15.);
}
// Read short value from texture at index off
float rshorts(float off)
{
float hilo = mod(off, 2.);
off *= .5;
vec2 ind = (vec2(mod(off, iSequenceWidth), floor(off/iSequenceWidth))+.05)/iSequenceWidth;
vec4 block = texture(iSequence, ind);
vec2 data = mix(block.rg, block.ba, hilo);
return round(dot(vec2(255., 65280.), data));
}
// Read float value from texture at index off
float rfloats(int off)
{
float d = rshorts(float(off));
float sign = floor(d/32768.),
exponent = floor(d/1024.-sign*32.),
significand = d-sign*32768.-exponent*1024.;
if(exponent == 0.)
return mix(1., -1., sign) * 5.960464477539063e-08 * significand;
return mix(1., -1., sign) * (1. + significand * 9.765625e-4) * pow(2.,exponent-15.);
}
// TODO: COPY THIS FROM SFX SHADER TO ACHIEVE SYNC
const int NTRK = 4, NMOD = 19, NPTN = 5, NNOT = 62;
int trk_sep(int index) {return int(rfloats(index));}
int trk_syn(int index) {return int(rfloats(index+1+1*NTRK));}
float trk_norm(int index) {return rfloats(index+1+2*NTRK);}
float trk_rel(int index) {return rfloats(index+1+3*NTRK);}
float mod_on(int index) {return rfloats(index+1+4*NTRK);}
float mod_off(int index) {return rfloats(index+1+4*NTRK+1*NMOD);}
int mod_ptn(int index) {return int(rfloats(index+1+4*NTRK+2*NMOD));}
float mod_transp(int index) {return rfloats(index+1+4*NTRK+3*NMOD);}
int ptn_sep(int index) {return int(rfloats(index+1+4*NTRK+4*NMOD));}
float note_on(int index) {return rfloats(index+2+4*NTRK+4*NMOD+NPTN);}
float note_off(int index) {return rfloats(index+2+4*NTRK+4*NMOD+NPTN+1*NNOT);}
float note_pitch(int index) {return rfloats(index+2+4*NTRK+4*NMOD+NPTN+2*NNOT);}
float note_vel(int index) {return rfloats(index+2+4*NTRK+4*NMOD+NPTN+3*NNOT);}
const float BPM = 35.;
const float BPS = BPM/60.;
const float SPB = 60./BPM;
// Extract drum signal
float scale(float t)
{
float max_mod_off = 12.;
int drum_index = 25;
float d = 0.;
// mod for looping
float BT = mod(BPS * t, max_mod_off);
if(BT > max_mod_off) return 0.;
t = SPB*BT;
float Bon = 0.;
float Boff = 0.;
for(int trk = 0; trk < max(NTRK,0); trk++)
{
if(trk_syn(trk) != drum_index) continue;
int tsep = trk_sep(trk);
int tlen = trk_sep(trk+1) - tsep;
int _modU = tlen-1;
for(int i=0; i<max(tlen-1,0); i++) if(BT < mod_on(tsep + i + 1)) {_modU = i; break;}
int _modL = tlen-1;
for(int i=0; i<max(tlen-1,0); i++) if(BT < mod_off(tsep + i) + trk_rel(trk)) {_modL = i; break;}
for(int _mod = _modL; _mod <= max(_modL,_modU); _mod++)
{
float B = BT - mod_on(tsep + _mod);
int ptn = mod_ptn(tsep + _mod);
int psep = ptn_sep(ptn);
int plen = ptn_sep(ptn+1) - psep;
int _noteU = plen;
for(int i=0; i<max(plen,0); i++) if(B < note_on(psep + i + 1)) {_noteU = i; break;}
int _noteL = plen;
for(int i=0; i<max(plen,0); i++) if(B <= note_off(psep + i ) + trk_rel(trk)) {_noteL = i; break;}
iNBeats = 0.;
for(int _note = _noteL; _note <= max(_noteL, _noteU); _note++)
{
Bon = note_on(psep + _note);
Boff = note_off(psep + _note);
int Bdrum = int(note_pitch(psep + _note));
if(Bdrum != 0)
{
d = max(d, smoothstep(Bon,Bon+.1,B)*(1.-smoothstep(Bon+.1, Bon+.2, B)));
iNBeats += 1.;
}
}
return d;
}
}
return 0.;
}
// Hash function
float rand(vec2 x)
{
return fract(sin(dot(x-1. ,vec2(12.9898,78.233)))*43758.5453);
}
// One-dimensional perlin noise
float snoise_1d(float t)
{
float i = floor(t);
t = fract(t);
t = ((6.*t-15.)*t+10.)*t*t*t;
return mix(-1.+2.*rand(i*c.xx), -1.+2.*rand((i+1.)*c.xx), t);
}
// Two-dimensional perlin noise
float snoise_2d(vec2 t)
{
vec2 i = floor(t);
t = fract(t);
//t = ((6.*t-15.)*t+10.)*t*t*t; // TODO: add this for slower perlin noise
t = smoothstep(c.yy, c.xx, t); // TODO: add this for faster value noise
vec2 v1 = vec2(rand(i), rand(i+c.xy)),
v2 = vec2(rand(i+c.yx), rand(i+c.xx));
v1 = c.zz+2.*mix(v1, v2, t.y);
return mix(v1.x, v1.y, t.x);
}
// Multi-frequency simplex noise
float mfsnoise_2d(vec2 x, float f0, float f1, float phi)
{
float sum = 0.;
float a = 1.2;
float n = 0.;
for(float f = f0; f<max(f0,f1); f = f*2.)
{
sum = a*snoise_2d(f*x) + sum;
a = a*phi;
n += 1.;
}
// Normalization
sum *= (1.-phi)/(1.-pow(phi, n));
return sum;
}
// 3D rotational matrix
mat3 rot(vec3 p)
{
return mat3(c.xyyy, cos(p.x), sin(p.x), 0., -sin(p.x), cos(p.x))
*mat3(cos(p.y), 0., -sin(p.y), c.yxy, sin(p.y), 0., cos(p.y))
*mat3(cos(p.z), -sin(p.z), 0., sin(p.z), cos(p.z), c.yyyx);
}
mat2 rot2(float p)
{
vec2 cs = vec2(cos(p), sin(p));
return mat2(cs.x,-cs.y,cs.y, cs.x);
}
// add object to scene
vec2 add(vec2 sda, vec2 sdb)
{
return mix(sda, sdb, step(sdb.x, sda.x));
}
vec2 sub(vec2 sda, vec2 sdb)
{
return mix(-sda, sdb, step(sda.x, sdb.x));
}
// Distance to line segment
float lineseg(vec2 x, vec2 p1, vec2 p2)
{
vec2 d = p2-p1;
return length(x-mix(p1, p2, clamp(dot(x-p1, d)/dot(d,d),0.,1.)));
}
float lineseg3(vec3 x, vec3 p1, vec3 p2)
{
vec3 d = p2-p1;
return length(x-mix(p1, p2, clamp(dot(x-p1, d)/dot(d,d),0.,1.)));
}
// Distance to circle
float circle(vec2 x, float r)
{
return abs(length(x)-r);
}
// Distance to circle segment
float circlesegment(vec2 x, float r, float p0, float p1)
{
float p = atan(x.y, x.x);
vec2 philo = vec2(max(p0, p1), min(p0, p1));
if((p < philo.x && p > philo.y) || (p+2.*pi < philo.x && p+2.*pi > philo.y) || (p-2.*pi < philo.x && p-2.*pi > philo.y))
return abs(length(x)-r);
return min(
length(x-r*vec2(cos(p0), sin(p0))),
length(x-r*vec2(cos(p1), sin(p1)))
);
}
// compute distance to regular polygon
float dpoly_min(vec2 x, float N, float R)
{
float d = 2.*pi/N,
t = mod(acos(x.x/length(x)), d)-.5*d;
return R-length(x)*cos(t)/cos(.5*d);
}
// 2D box
float box(vec2 x, vec2 b)
{
vec2 d = abs(x) - b;
return length(max(d,c.yy)) + min(max(d.x,d.y),0.);
}
// Get glyph data from texture
float dglyph(vec2 x, float ordinal, float size)
{
float dis = box(x, 2.*size*c.xx);
if(dis > 0.)
return dis+.5*size;
// Find glyph offset in glyph index
float nglyphs = rfloat(1.),
offset = 0;
for(float i=0.; i<max(nglyphs,0); i+=1.)
{
float ord = floor(rfloat(2.+2.*i));
if(ord == ordinal)
{
offset = floor(rfloat(2.+2.*i+1.));
break;
}
}
if(offset == 0.) return 1.;
// Get distance from glyph data
float d = 1.;
// Lines
float nlines = floor(rfloat(offset));
offset += 1.;
for(float i=0.; i<max(nlines,0); i+=1.)
{
float x1 = rfloat(offset);
offset += 1.;
float y1 = rfloat(offset);
offset += 1.;
float x2 = rfloat(offset);
offset += 1.;
float y2 = rfloat(offset);
offset += 1.;
d = min(d, lineseg(x, size*vec2(x1,y1), size*vec2(x2, y2)));
}
// Circles
float ncircles = floor(rfloat(offset));
offset += 1.;
for(float i=0.; i<max(ncircles,0); i+=1.)
{
float xc = rfloat(offset);
offset += 1.;
float yc = rfloat(offset);
offset += 1.;
float r = rfloat(offset);
offset += 1.;
d = min(d, circle(x-size*vec2(xc, yc), size*r));
}
// Circle segments
float nsegments = floor(rfloat(offset));
offset += 1.;
for(float i=0.; i<max(nsegments,0); i+=1.)
{
float xc = rfloat(offset);
offset += 1.;
float yc = rfloat(offset);
offset += 1.;
float r = rfloat(offset);
offset += 1.;
float phi0 = rfloat(offset);
offset += 1.;
float phi1 = rfloat(offset);
offset += 1.;
d = min(d, circlesegment(x-size*vec2(xc,yc), size*r, phi0, phi1));
}
if(nlines+ncircles+nsegments == 0.)
return dis;
return d;
}
// Get distance to string from database
float dstring(vec2 x, float ordinal, float size)
{
// Get string database offset
float stroff0 = floor(rfloat(0.));
// Return 1 if wrong ordinal is supplied
float nstrings = floor(rfloat(stroff0));
if(ordinal >= nstrings)
{
return 1.;
}
// Get offset and length of string from string database index
float stroff = floor(rfloat(stroff0+1.+2.*ordinal));
float len = floor(rfloat(stroff0+2.+2.*ordinal));
/* Slower code
float d = 1.;
for(float i=0.; i<len; i+=1.)
d = min(d, dglyph(x-2.1*i*size*c.xy,floor(rfloat(0.+stroff+i)), .8*size));
return d;
*/
// Draw glyphs
vec2 dx = mod(x-size, 2.*size)-size,
ind = ceil((x-dx+size)/2./size);
// Bounding box
float bound = box(x-size*(len-3.)*c.xy, vec2(size*len, 1.*size));
if(bound > 0.)
{
return bound+.5*size;
}
return dglyph(dx, floor(rfloat(stroff+ind.x)), .7*size);
}
// distance to a floating point number string
// for debugging stuff while shader is loaded
float dfloat(vec2 x, float num, float size)
{
float d = 1., index = 0.;
// Determine sign and output it if present
float sign = sign(num), exp = 0.;
if(sign<0.)
{
d = min(d, dglyph(x, 45., .7*size));
index += 1.;
num *= -1.;
}
// The first power of ten that floors num to anything not zero is the exponent
for(exp = -15.; exp < max(15., -32.+sign); exp += 1.)
if(floor(num*pow(10.,exp)) != 0.)
break;
exp *= -1.;
// Determine the significand and output it
for(float i = exp; i >= max(exp-5.,-33); i -= 1.)
{
float po = pow(10.,i);
float ca = floor(num/po);
num -= ca*po;
d = min(d, dglyph(x+.7*size*c.xy-2.*index*size*c.xy, 48.+ca, .7*size));
index += 1.;
if(i == exp) // decimal point
{
d = min(d, dglyph(x-2.*index*size*c.xy, 46., .7*size));
index += 1.;
}
}
// Output the exponent
d = min(d, dglyph(x+.7*size*c.xy-2.*index*size*c.xy, 101., .7*size));
index += 1.;
if(exp < 0.) // Sign
{
d = min(d, dglyph(x+.7*size*c.xy-2.*index*size*c.xy, 45., .7*size));
index += 1.;
exp *= -1.;
}
float ca = floor(exp/10.);
d = min(d, dglyph(x+.7*size*c.xy-2.*index*size*c.xy, 48.+ca, .7*size));
index += 1.;
ca = floor(exp-10.*ca);
d = min(d, dglyph(x+.7*size*c.xy-2.*index*size*c.xy, 48.+ca, .7*size));
index += 1.;
return d;
}
// Distance to 210 logo
float logo(vec2 x, float r)
{
return min(
min(circle(x+r*c.zy, r), lineseg(x,r*c.yz, r*c.yx)),
circlesegment(x+r*c.xy, r, -.5*pi, .5*pi)
);
}
// Distance to stroke for any object
float stroke(float d, float w)
{
return abs(d)-w;
}
// Distance to hexagon pattern
vec2 ind;
float hexagon( vec2 p )
{
vec2 q = vec2( p.x*1.2, p.y + p.x*0.6 );
vec2 pi = floor(q);
vec2 pf = fract(q);
float v = mod(pi.x + pi.y, 3.);
float ca = step(1.,v);
float cb = step(2.,v);
vec2 ma = step(pf.xy,pf.yx);
ind = pi + ca - cb*ma;
return dot( ma, 1.0-pf.yx + ca*(pf.x+pf.y-1.0) + cb*(pf.yx-2.0*pf.xy) );
}
// extrusion
float zextrude(float z, float d2d, float h)
{
vec2 w = vec2(-d2d, abs(z)-.5*h);
return length(max(w,0.));
}
float box( vec3 x, vec3 b )
{
return length(max(abs(x) - b,0.));
}
vec2 inset(vec3 x)
{
float rs = 1.9;
return vec2(min(x.y+.4, abs(length(x)-rs+.15)), 9.);
}
vec2 inset2(vec3 x)
{
float rs = 1.9;
return vec2(abs(length(x)-rs+.15), 9.);
}
// Hangar scene
vec2 scene(vec3 x)
{
// Start with floor (floor material: 1)
// Water: /*+.01*snoise_2d(2.*x.xz-iTime)+.01*snoise_2d(4.1*x.xz-iTime*c.yx)*/
vec2 sdf = vec2(x.y+.4, 1.);
// Add glass sphere (glass material: 2)
float rs = 1.9;
// sdf = add(sdf, vec2(stroke(length(x)-rs,.05), 2.));
// Add skydome
//sdf = add(sdf, vec2(abs(length(x)-2.*rs), 0.));
// Add hexagonal windows to glass sphere (ceil material: 3)
vec2 pt = vec2(atan(x.x,x.y+.4), -acos(x.z/length(x+.4*c.yxy)));
float d = stroke(zextrude(length(x)-rs,-stroke(hexagon(vec2(5.,10.)*pt), .1),.1), .05);
sdf = add(sdf, vec2(d, 3.));
// Make some of the windows closed.
if(rand(ind) < .5)
{
float d = stroke(zextrude(length(x)-rs,stroke(hexagon(vec2(5.,10.)*pt), .1),.1), .01);
sdf = add(sdf, vec2(d, 2.));
}
// Add floor panel below windows, material: 4
d = stroke(zextrude(x.y+.4, -stroke(length(x.xz)-rs,.1),.1),.05);
sdf = add(sdf, vec2(d, 4.));
// Add mountains in the background
sdf = add(sdf, vec2(x.y+.45-.1*step(rs, length(x.xz))-(.5+mfsnoise_2d(x.xz, 2., 4.e3, .35))*smoothstep(1.3*rs, 4.*rs, length(x.xz)), 4.));
// Add lamps
// TODO: circle of lamps that look like cups with spheres in them
/*
vec3 z = x+.7*rs*c.yyx-.6*c.yxy;
float rl = .2;
d = length(z)-rl;
sdf = add(sdf, vec2(d, 6.));
*/
// Add piano
// Add guard objects for debugging
float dr = .2;
vec3 y = mod(x,dr)-.5*dr;
float guard = -length(max(abs(y)-vec3(.5*dr*c.xx, .6),0.));
guard = abs(guard)+dr*.1;
sdf.x = min(sdf.x, guard);
// sdf.x = abs(sdf.x)-.008;
return sdf;
// return vec2(abs(sdf.x)-.001, sdf.y);
}
// Greetings scene
vec2 greetings(vec3 x)
{
vec2 sdf = c.xy;
return sdf;
}
// graph traversal for 210 logo effect
vec2 textpre(vec3 x)
{
vec2 sdf = vec2(x.z, 7.);
float structure = stroke(logo(x.xy+.3*c.xy,.6),.25);
float blend = smoothstep(2., 6., iTime)*(1.-smoothstep(6.,12.,iTime));
if(structure < 0. && blend >= 1.e-3)
{
sdf = vec2(stroke(zextrude(x.z, 1.5*x.z-stroke(logo(x.xy+.3*c.xy,.6),.25), 1.*blend*clamp(1.-exp(-(x.x-34.)-8.*iTime), 0., .5)), .05*blend), 7.);
}
sdf.x = abs(sdf.x)-.3;
return sdf;
}
// graph traversal for endeavour text effect
vec2 textpre2(vec3 x)
{
float blend = smoothstep(15., 16., iTime)*(1.-smoothstep(24.,25.,iTime));
vec2 sdf = vec2(min(x.z, box(x, vec3(2.,1.6,.25*iScale*blend))), 7.);
return sdf;
}
// 3D Effect on text in intro (210 logo)
vec2 texteffect(vec3 x)
{
// Start with z=0 plane
vec2 sdf = vec2(x.z, 7.);
float hex = hexagon(18.*x.xy);
// compute hexagon indices in cartesian coordinates
vec2 cind = ind/18.;
cind = vec2(cind.x/1.2, cind.y);
cind = vec2(cind.x, cind.y-cind.x*.6);
// build up team210 logo (t < 12.)
float structure = stroke(logo(cind+.3*c.xy,.6),.25);
float blend = smoothstep(2., 6., iTime)*(1.-smoothstep(6.,12.,iTime));
if(structure < 0. && blend >= 1.e-3)
{
float blend = smoothstep(2., 6., iTime)*(1.-smoothstep(6.,12.,iTime));
sdf = vec2(stroke(zextrude(x.z, 2.*x.z-stroke(logo(cind.xy+.3*c.xy,.6),.25), (.5+.5*snoise_2d(24.*cind.xy-iTime))*blend*clamp(1.-exp(-(ind.x-34.)-8.*iTime), 0., 1.)), .05*blend), 7.);
}
// Add guard objects for debugging
float dr = .03;
vec3 y = mod(x,dr)-.5*dr;
float guard = -length(max(abs(y)-vec3(.5*dr*c.xx, .6),0.));
guard = abs(guard)+dr*.1;
sdf.x = min(sdf.x, guard);
return sdf;
}
vec2 texteffect2(vec3 x) // text effect for endeavor text (bounce with rhythm
{
vec2 sdf = vec2(x.z, 7.);
float hex = hexagon(18.*x.xy);
// compute hexagon indices in cartesian coordinates
vec2 cind = ind/18.;
cind = vec2(cind.x/1.2, cind.y);
cind = vec2(cind.x, cind.y-cind.x*.6);
// build up endeavour text
// Show demo name: "Endeavor" (t < 25.)
float endeavor = dstring(cind+2.*(1.2*iTime-22.8)*c.xy, 0., .8);
endeavor = stroke(endeavor, .2);
float structure = mix(0., endeavor, clamp(.25*(iTime-14.), 0., 1.));
float blend = smoothstep(15., 16., iTime)*(1.-smoothstep(24.,25.,iTime));
if(structure < 0. && blend >= 1.e-3)
{
sdf = vec2(stroke(zextrude(x.z, -endeavor, .25*iScale*(.5+.5*snoise_2d(24.*cind.xy-iTime))*blend), .05*blend), 7.);
}
// Add guard objects for debugging
// float dr = .04;
// vec3 y = mod(x,dr)-.5*dr;
// float guard = -length(max(abs(y)-vec3(.5*dr*c.xx, .6),0.));
// guard = abs(guard)+dr*.1;
// sdf.x = min(sdf.x, guard);
return sdf;
}
vec3 post1(vec2 uv, vec3 col)
{
if(uv.y < .8)
{
// scanlines
col += vec3(0., 0.05, 0.1)*sin(uv.y*1050.+ 5.*iTime);
col = clamp(col,c.yyy,c.xxx);
return col;
}
// Preparations
vec3 blu = vec3(.2, .68, 1.);
float px = 1.5/iResolution.y;
// 210 logo
float dt0 = logo(uv-2.*vec2(-.45*a,.45),.04);
dt0 = stroke(dt0, .01);
col = mix(col, mix(col, blu, .5), smoothstep(px, -px ,dt0));
dt0 = stroke(dt0, .0025);
col = mix(col, blu, smoothstep(px, -px ,dt0));
// bounding box for time display
dt0 = stroke(lineseg(uv-2.*vec2(-.45*a, .45)-.2*c.xy, c.yy, 1.*c.xy), .05);
col = mix(col, mix(col, blu, .5), smoothstep(px, -px, dt0));
float dt1 = stroke(dt0, .0025);
col = mix(col, blu, smoothstep(px, -px, dt1));
// "elapsed:" text with time display
float dta = dstring(uv-2.*vec2(-.45*a,.45)-.3*c.xy,1., .025);
dta = min(dta, dfloat(uv-2.*vec2(-.45*a,.45)-.7*c.xy, iTime, .025));
dta = stroke(dta, .0025);
col = mix(col, clamp(1.*blu, 0., 1.), smoothstep(px, -px, dta));
// bounding box for size display
dt0 = stroke(lineseg(uv-2.*vec2(-.45*a, .45)-1.4*c.xy, c.yy, 1.*c.xy), .05);
col = mix(col, mix(col, blu, .5), smoothstep(px, -px, dt0));
dt1 = stroke(dt0, .0025);
col = mix(col, blu, smoothstep(px, -px, dt1));
// "size:" text with size
dta = dstring(uv-2.*vec2(-.45*a,.45)-1.5*c.xy,2., .025);
dta = min(dta, dfloat(uv-2.*vec2(-.45*a,.45)-1.7*c.xy, iExecutableSize, .025));
dta = stroke(dta, .0025);
col = mix(col, clamp(1.*blu, 0., 1.), smoothstep(px, -px, dta));
// scanlines
col += vec3(0., 0.05, 0.1)*sin(uv.y*1050.+ 5.*iTime);
col = clamp(col,c.yyy,c.xxx);
return col;
}
//performs raymarching
//scene: name of the scene function
//xc: name of the coordinate variable
//ro: name of the ray origin variable
//d: name of the distance variable
//dir: name of the direction variable
//s: name of the scenestruct variable
//N: number of iterations used
//eps: exit criterion
//flag: name of the flag to set if raymarching succeeded
#define raymarch(scene, xc, ro, d, dir, s, N, eps, flag) \
{\
flag = false;\
for(int ia=0; ia<max(N,0); ++ia)\
{\
xc = ro + d*dir;\
s = scene(xc);\
if(s.x < eps)\
{\
flag = true;\
break;\
}\
d += s.x;\
}\
}
//computes normal with finite differences
//scene: name of the scene function
//n: name of the normal variable
//eps: precision of the computation
//xc: location of normal evaluation
#define calcnormal(scene, _n, eps, xc) \
{\
float ss = scene(xc).x;\
_n = normalize(vec3(scene(xc+eps*c.xyy).x-ss,\
scene(xc+eps*c.yxy).x-ss,\
scene(xc+eps*c.yyx).x-ss));\
}
//camera setup
//camera: camera function with camera(out vec3 ro, out vec3 r, out vec3 u, out vec3 t)
//ro: name of the ray origin variable
//r: name of the right variable
//u: name of the up variable
//t: name of the target variable
//uv: fragment coordinate
//dir: name of the dir variable
#define camerasetup(camera, ro, r, u, t, uv, dir) \
{\
camera(ro, r, u, t);\
t += uv.x*r+uv.y*u;\
dir = normalize(t-ro);\
}
//uv += .02*vec2(snoise_2d(uv-iTime+2.),snoise_2d(uv-iTime+3.));\
//post processing: 210 logo and trendy display lines
//col: output color
//uv: fragment coordinate
#define post(color, uv) \
{\
color = post1(uv, color);\
}
//camera for scene 1
void camera1(out vec3 ro, out vec3 r, out vec3 u, out vec3 t)
{
ro = c.yyx;//-1.*c.yyx+.1*(iTime-28.)*c.yyx;
r = c.xyy;
u = c.yxy;
t = c.yyy;//-1.*c.yyx+.1*(iTime-28.)*c.yyx;
}
// static camera
void camera0(out vec3 ro, out vec3 r, out vec3 u, out vec3 t)
{
float blend = 0.;// smoothstep(2., 6., iTime)*(1.-smoothstep(6.,12.,iTime));
ro = c.yyx-.5*c.yxy*blend;
r = c.xyy;
u = c.yxy+.5*c.yyx*blend;
t = .1*c.yyx;
}
vec3 stdcolor(vec2 x)
{
return 0.5 + 0.5*cos(iTime+x.xyx+vec3(0,2,4));
}
float star(vec2 x, float r0)
{
return 1.-smoothstep(.5*r0, r0, length(x));
}
vec3 background(vec2 x)
{
// Add sky gradient
vec3 col = mix(vec3(1., .56, .44), vec3(1.,1.,.87), abs(x.y));
// Add sun
float d = length(vec2(x.x, abs(x.y+.15))-.3*c.yx)-.15;
// col = mix(col, c.xxx, smoothstep(1.5/iResolution.y, -1.5/iResolution.y, d));
// Add clouds
float da = .5+.5*snoise_2d(5.*vec2(x.x, abs(x.y+.15))-.4*iTime);
float dx = .5*(da+.5+.5*mfsnoise_2d(vec2(x.x-.2*iTime, abs(x.y+.15)), 1.e1, 1.e4, .45));
col = mix(col, vec3(1.,.7,.57), clamp(dx, 0., 1.));
col = mix(col, .9*vec3(1.,.7,.57), clamp(.14+dx, 0., 1.));
col = mix(col, .8*vec3(1.,.7,.57), clamp(.05+dx, 0., 1.));
// And more clouds
// da = .5+.5*snoise_2d(2.*vec2(x.x, abs(x.y+.15))-.4*iTime-15.);
// dx = .5*(da+.5+.5*mfsnoise_2d(vec2(x.x-.1*iTime-15., abs(x.y+.15)), 1.e0, 1.e3, .55));
// col = mix(col, .8*vec3(1.,1.,.87), clamp(.15+dx, 0., 1.));
// col = mix(col, .9*vec3(1.,1.,.87), clamp(.12+dx, 0., 1.));
// col = mix(col, vec3(1.,1.,.87), clamp(.09+dx, 0., 1.));
col = mix(col, c.xxx, .4*smoothstep(1.5/iResolution.y, -1.5/iResolution.y, d));
return col;
}
// Initial intro
vec3 background2(vec2 uv)
{
// hexagonal grid
float d = stroke(-hexagon(18.*uv), .1);
// compute hexagon indices in cartesian coordinates
vec2 cind = ind/18.;
cind = vec2(cind.x/1.2, cind.y);
cind = vec2(cind.x, cind.y-cind.x*.6);
// build up team210 logo (t < 12.)
float structure = exp(-(ind.x-34.)-8.*iTime)+stroke(logo(cind+.3*c.xy,.6),.25);
// blend to gray (t < 16.)
structure = mix(structure, hexagon(18.*uv), clamp(.25*(iTime-12.), 0., 1.));
vec2 dind = cind;
// Show demo name: "Endeavor" (t < 25.)
float endeavor = dstring(cind+2.*(-6.+1.2*iTime-1.2*14.)*c.xy, 0., .8);
endeavor = stroke(endeavor, .2);
structure = mix(structure, endeavor, clamp(.25*(iTime-14.), 0., 1.));
// blend hexagons smaller (t < 27.)
d = mix(d, stroke(-hexagon(8.*uv), .1), clamp(.5*(iTime-24.), 0., 1.));
structure = mix(structure, hexagon(8.*uv), clamp(.5*(iTime-24.), 0., 1.));
dind = ind/8.;
dind = vec2(dind.x/1.2, dind.y);
dind = vec2(dind.x, dind.y-dind.x*.6);
cind = mix(cind, dind, clamp(.5*(iTime-24.), 0., 1.));
// make background change the color with time
vec2 dt = vec2(snoise_2d(5.*cind+2.),snoise_2d(5.*cind+3.));
float m = (.5+.5*snoise_2d(50.*cind)
+ mix(-1.,clamp(.5+.5*snoise_2d(.5*(cind)-dt-2.*iTime*c.xx),0.,1.), clamp(.125*(iTime-1.),0.,1.)));
vec3 c1 = mix(c.yyy, c.yyy,m)*smoothstep(-1.5/iResolution.y, 1.5/iResolution.y, d);
c1 = mix(c1, mix(c.yyy, vec3(1.,0.27,0.),m), smoothstep(-1.5/iResolution.y, 1.5/iResolution.y, stroke(structure,.05)))*smoothstep(-1.5/iResolution.y, 1.5/iResolution.y, d);
c1 = clamp(c1, 0., 1.);
// grayscale everything outside the structure
if(structure > 0.)
c1 = mix(.3*length(c1)*c.xxx/sqrt(3.), c1, clamp(.5*(iTime-24.), 0., 1.));
// blend to black at the end
c1 = mix(c1, c.yyy, clamp(iTime-27., 0., 1.));
return clamp(c1,0.,1.);
}
vec3 color(float rev, float ln, float mat, vec2 uv, vec3 x)
{
if(mat == 2.)
{
vec3 col = .1*c.xyy + .3*c.xyy * abs(ln) + .8*c.xxy * abs(pow(rev,8.));
vec2 pt = vec2(atan(x.x,x.y+.4), -acos(x.z/length(x+.4*c.yxy)));
float d = stroke(-hexagon(6.*vec2(5.,10.)*pt), .1);
float m = rand(ind/*+floor(2.*iTime)*/);
col = mix(col, mix(col, vec3(1.,0.27,0.),m), smoothstep(-1.5/iResolution.y, 1.5/iResolution.y, d));
return col;
}
if(mat == 7.)
return background2(x.xy);
if(mat == 6.)
return clamp(.7*c.xxx + .7*c.xxy*abs(ln) + c.xxx*abs(pow(rev,8.)), 0., 1.);
if(mat == 9.)
return c.xyy;
return .1*c.xyy + .3*c.xyy * abs(ln) + .8*c.xxy * abs(pow(rev,8.));
}
// Revision logo of width 1.
float drevision(vec2 x)
{
float l = length(x),
p = atan(x.y,x.x),
d = abs(l-.07)-.02,
k1 = abs(l-.16)-.03,
k2 = abs(l-.21)-.02,
k3 = abs(l-.35)-.03,
k4 = abs(l-.45)-.02;
d = min(d, mix(d, abs(l-.11)-.03, step(p, -1.71)*step(-2.73, p)));
d = min(d, mix(d, k1, step(p, 3.08)*step(2.82,p)));
d = min(d, mix(d, k1, step(p, 1.47)*step(.81,p)));
d = min(d, mix(d, k1, step(p, -.43)*step(-1.19,p)));
d = min(d, mix(d, k2, step(p, -2.88)*step(-pi,p)));
d = min(d, mix(d, k2, step(p, pi)*step(2.38,p)));
d = min(d, mix(d, k2, step(p, 2.1)*step(.51,p)));
d = min(d, mix(d, k2, step(p, .3)*step(-1.6,p)));
d = min(d, abs(l-.24)-.02);
d = min(d, mix(d, k3, step(p, -2.18)*step(-pi, p)));
d = min(d, mix(d, k3, step(p, -1.23)*step(-1.7, p)));
d = min(d, mix(d, k3, step(p, -.58)*step(-.78, p)));
d = min(d, mix(d, k3, step(p, 0.)*step(-.29, p)));
d = min(d, mix(d, k3, step(p, 1.25)*step(1.06, p)));
d = min(d, mix(d, k3, step(p, 1.99)*step(.5*pi, p)));
d = min(d, abs(l-.41)-.03);
d = min(d, mix(d, k4, step(p, 1.04)*step(.04, p)));
d = min(d, mix(d, k4, step(p, -2.2)*step(-2.34, p)));
return d-.005;
}
vec3 smallogo(vec2 uv)
{
if(iTime < 33.)
{
uv *= rot2(iTime);
float d = drevision(uv), d2 = abs(d-.01)-.002;
vec3 col = mix(c.yyy, (.3+.4*iScale)*c.xxx, smoothstep(1.5/iResolution.y, -1.5/iResolution.y, d));
col = mix(col, vec3(1.,0.27,0.), smoothstep(1.5/iResolution.y, -1.5/iResolution.y, d2));
col *= smoothstep(28., 29., iTime)*(1.-smoothstep(32., 33., iTime));
return col;
}
else
{
}
}
void mainImage( out vec4 fragColor, in vec2 fragCoord )
{
// iScale = scale(iTime+.1); //TODO: ADD THIS! IT SYNCS
a = iResolution.x/iResolution.y;
vec3 ro, r, u, t, x, dir;
vec2 s = c.xy, uv;
float d = 0.;
bool hit = false;
vec3 col = c.yyy;
// Antialiasing
for(int jii=0; jii<max(iFSAA, 0); ++jii)
for(int jij=0; jij<max(iFSAA,0); ++jij)
{
vec2 o = vec2(float(jii),float(jij)) / float(iFSAA) - .5;
uv = (-iResolution.xy + 2.*(fragCoord+o))/iResolution.y;
// Test font glyphs TODO: Remove
// if(iTime < 1000.)
// {
// float ds = .1;
// // Need 32-126
// vec2 xa = mod(uv+iResolution.xy/iResolution.y, ds)-.5*ds,