-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
674 lines (522 loc) · 24.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
import torch
import torch.nn as nn
import torch.nn.init
import torch.nn.functional as F
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
from torch.nn.utils.clip_grad import clip_grad_norm_
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
import numpy as np
from loss import TripletLoss
from basic.bigfile import BigFile
from collections import OrderedDict
import math
# from gru_pooling_res import qkv_layer as qkv_res
from PaA import qkv_layer as preview_aware_attention
def get_we_parameter(vocab, w2v_file):
w2v_reader = BigFile(w2v_file)
ndims = w2v_reader.ndims
we = []
# we.append([0]*ndims)
for i in range(len(vocab)):
try:
vec = w2v_reader.read_one(vocab.idx2word[i])
except:
vec = np.random.uniform(-1, 1, ndims)
we.append(vec)
print('getting pre-trained parameter for word embedding initialization', np.shape(we))
return np.array(we)
def l2norm(X):
"""L2-normalize columns of X
"""
norm = torch.pow(X, 2).sum(dim=1, keepdim=True).sqrt()
X = torch.div(X, norm)
return X
def xavier_init_fc(fc):
"""Xavier initialization for the fully connected layer
"""
r = np.sqrt(6.) / np.sqrt(fc.in_features +
fc.out_features)
fc.weight.data.uniform_(-r, r)
fc.bias.data.fill_(0)
def get_mask(kernel_size, stride, lengths, mask):
lengths = torch.tensor(lengths)
# num = (lengths / stride).int()
num = ((lengths - kernel_size) / stride).int() + 1
conv_len = math.floor((mask.size(1) - kernel_size) / stride) + 1
mask_change = torch.zeros(mask.size(0), conv_len)
for k in range(mask.size(0)):
# if num[k] > conv_len:
# num[k] = conv_len
mask_change[k, :num[k]] = 1.0
return mask_change.cuda()
class MFC(nn.Module):
"""
Multi Fully Connected Layers
"""
def __init__(self, fc_layers, dropout, have_dp=True, have_bn=False, have_last_bn=False):
super(MFC, self).__init__()
# fc layers
self.n_fc = len(fc_layers)
if self.n_fc > 1:
if self.n_fc > 1:
self.fc1 = nn.Linear(fc_layers[0], fc_layers[1])
# dropout
self.have_dp = have_dp
if self.have_dp:
self.dropout = nn.Dropout(p=dropout)
# batch normalization
self.have_bn = have_bn
self.have_last_bn = have_last_bn
if self.have_bn:
if self.n_fc == 2 and self.have_last_bn:
self.bn_1 = nn.BatchNorm1d(fc_layers[1])
self.init_weights()
def init_weights(self):
"""Xavier initialization for the fully connected layer
"""
if self.n_fc > 1:
xavier_init_fc(self.fc1)
def forward(self, inputs):
if self.n_fc <= 1:
features = inputs
elif self.n_fc == 2:
features = self.fc1(inputs)
# batch normalization
if self.have_bn and self.have_last_bn:
features = self.bn_1(features)
if self.have_dp:
features = self.dropout(features)
return features
class Video_preview_intensive_encoding(nn.Module):
"""
Section 3.1. Video-side Multi-level Encoding
"""
def __init__(self, opt):
super(Video_preview_intensive_encoding, self).__init__()
self.rnn_output_size = opt.visual_rnn_size * 2
self.dropout = nn.Dropout(p=opt.dropout)
self.visual_norm = opt.visual_norm
self.gru_pool = opt.gru_pool
self.space = opt.space
# visual bidirectional rnn encoder
self.rnn = nn.GRU(opt.visual_feat_dim, opt.visual_rnn_size, batch_first=True, bidirectional=True)
self.num_cnn = opt.num_cnn
self.convs1 = nn.ModuleList([
nn.Conv2d(1, opt.visual_kernel_num, (opt.visual_kernel_sizes[i], 2048), stride=opt.visual_kernel_stride[i])
for i in range(self.num_cnn)
])
self.kernel_sizes = opt.visual_kernel_sizes
self.stride = opt.visual_kernel_stride
self.fc_org = nn.Linear(opt.visual_feat_dim, 2048)
self.paa = preview_aware_attention(opt, self.rnn_output_size, opt.qkv_input_dim, opt.qkv_out_dim)
if opt.space == 'latent':
self.vid_mapping_preview = Latent_mapping(opt.visual_mapping_layers_preview,
opt.dropout, opt.tag_vocab_size).cuda()
self.vid_mapping_intensive = Latent_mapping(opt.visual_mapping_layers_intensive,
opt.dropout, opt.tag_vocab_size).cuda()
else:
self.vid_mapping_preview = Hybrid_mapping(opt.visual_mapping_layers_preview,
opt.dropout, opt.tag_vocab_size).cuda()
self.vid_mapping_intensive = Hybrid_mapping(opt.visual_mapping_layers_intensive,
opt.dropout, opt.tag_vocab_size).cuda()
def forward(self, videos):
"""Extract video feature vectors."""
# self.rnn.flatten_parameters()
videos, videos_origin, lengths, mask = videos
del videos_origin
# previewing_branch
gru_init_out, _ = self.rnn(videos)
if self.gru_pool == 'mean':
mean_gru = Variable(torch.zeros(gru_init_out.size(0), self.rnn_output_size)).cuda()
for i, batch in enumerate(gru_init_out):
mean_gru[i] = torch.mean(batch[:lengths[i]], 0)
gru_out = mean_gru
elif self.gru_pool == 'max':
gru_out = torch.max(torch.mul(gru_init_out, mask.unsqueeze(-1)), 1)[0]
preview_out = self.dropout(gru_out)
# intensive-reading_branch
# Map to lower dimensions
con_input = F.relu(self.fc_org(videos))
mask_con = mask.unsqueeze(2).expand(-1, -1, con_input.size(2)) # (N,C,F1)
con_input_mask = con_input * mask_con
con_input = con_input_mask.unsqueeze(1)
con_out_list = []
for i in range(self.num_cnn):
con_out_i = F.relu(self.convs1[i](con_input)).squeeze(3).permute(0, 2, 1)
con_out_list.append(con_out_i)
del mask_con, con_input
# previewing-aware attention
intensive_out_list = []
aware_out_frame = self.paa(mask, con_input_mask, preview_out.unsqueeze(1))
intensive_out_list.append(aware_out_frame)
for i in range(self.num_cnn):
aware_mask = get_mask(self.kernel_sizes[i], self.stride[i], lengths, mask)
aware_out_i = self.paa(aware_mask, con_out_list[i], preview_out.unsqueeze(1))
intensive_out_list.append(aware_out_i)
intensive_out = torch.cat(intensive_out_list, 1)
del mask, con_out_list, intensive_out_list
# mapping--
if self.space == 'latent':
preview_out = self.vid_mapping_preview(preview_out)
intensive_out = self.vid_mapping_intensive(intensive_out)
else:
preview_out, preview_concept = self.vid_mapping_preview(preview_out)
intensive_out, intensive_concept = self.vid_mapping_intensive(intensive_out)
if self.space == 'latent':
return preview_out, intensive_out
else:
return (preview_out, preview_concept), (intensive_out, intensive_concept)
def load_state_dict(self, state_dict):
"""Copies parameters. overwritting the default one to
accept state_dict from Full model
"""
own_state = self.state_dict()
new_state = OrderedDict()
for name, param in state_dict.items():
if name in own_state:
new_state[name] = param
# print(new_state[name], ':', param)
super(Video_preview_intensive_encoding, self).load_state_dict(new_state)
class Text_multilevel_encoding(nn.Module):
"""
Section 3.2. Text-side Multi-level Encoding
"""
def __init__(self, opt):
super(Text_multilevel_encoding, self).__init__()
self.word_dim = opt.word_dim
self.we_parameter = opt.we_parameter
self.rnn_output_size = opt.text_rnn_size * 2
self.dropout = nn.Dropout(p=opt.dropout)
self.gru_pool = opt.gru_pool
self.loss_fun = opt.loss_fun
# visual bidirectional rnn encoder
self.embed = nn.Embedding(opt.vocab_size, opt.word_dim)
self.rnn = nn.GRU(opt.word_dim, opt.text_rnn_size, batch_first=True, bidirectional=True)
# visual 1-d convolutional network
self.convs1 = nn.ModuleList([
nn.Conv2d(1, opt.text_kernel_num, (window_size, self.rnn_output_size),
padding=(int((window_size - 1) / 2), 0))
for window_size in opt.text_kernel_sizes
])
if opt.space == 'latent':
self.text_mapping_preview = Latent_mapping(opt.text_mapping_layers, opt.dropout, opt.tag_vocab_size).cuda()
self.text_mapping_intensive = Latent_mapping(opt.text_mapping_layers, opt.dropout, opt.tag_vocab_size).cuda()
else:
self.text_mapping_preview = Hybrid_mapping(opt.text_mapping_layers, opt.dropout, opt.tag_vocab_size).cuda()
self.text_mapping_intensive = Hybrid_mapping(opt.text_mapping_layers, opt.dropout, opt.tag_vocab_size).cuda()
self.init_weights()
self.space = opt.space
self.use_bert = opt.use_bert
def init_weights(self):
if self.word_dim == 500 and self.we_parameter is not None:
self.embed.weight.data.copy_(torch.from_numpy(self.we_parameter))
else:
self.embed.weight.data.uniform_(-0.1, 0.1)
def forward(self, text, *args):
# Embed word ids to vectors
self.rnn.flatten_parameters()
cap_wids, cap_bows, cap_bert, lengths, cap_mask = text
# Level 1. Global Encoding by Mean Pooling According
org_out = cap_bows
# Level 2. Temporal-Aware Encoding by biGRU
cap_wids = self.embed(cap_wids)
packed = pack_padded_sequence(cap_wids, lengths, batch_first=True)
gru_init_out, _ = self.rnn(packed)
# Reshape *final* output to (batch_size, hidden_size)
padded = pad_packed_sequence(gru_init_out, batch_first=True)
gru_init_out = padded[0]
if self.gru_pool == 'mean':
gru_out = Variable(torch.zeros(padded[0].size(0), self.rnn_output_size)).cuda()
for i, batch in enumerate(padded[0]):
gru_out[i] = torch.mean(batch[:lengths[i]], 0)
elif self.gru_pool == 'max':
gru_out = torch.max(torch.mul(gru_init_out, cap_mask.unsqueeze(-1)), 1)[0]
gru_out = self.dropout(gru_out)
# Level 3. Local-Enhanced Encoding by biGRU-CNN
con_out = gru_init_out.unsqueeze(1)
con_out = [F.relu(conv(con_out)).squeeze(3) for conv in self.convs1]
con_out = [F.max_pool1d(i, i.size(2)).squeeze(2) for i in con_out]
con_out = torch.cat(con_out, 1)
con_out = self.dropout(con_out)
if self.use_bert == 1:
features = torch.cat((gru_out, con_out, org_out, cap_bert), 1)
else:
features = torch.cat((gru_out, con_out, org_out), 1)
if self.space == 'latent':
features_list = []
features_preview = self.text_mapping_preview(features)
features_intensive = self.text_mapping_intensive(features)
features_list.append(features_preview)
features_list.append(features_intensive)
else:
features_preview, features_caption_preview = self.text_mapping_preview(features)
features_intensive, features_caption_intensive = self.text_mapping_intensive(features)
if self.space == 'latent':
return features_list
else:
return (features_preview, features_caption_preview), (features_intensive, features_caption_intensive)
class Hybrid_mapping(nn.Module):
def __init__(self, mapping_layers, dropout, tag_vocab_size, l2norm=True):
super(Hybrid_mapping, self).__init__()
self.l2norm = l2norm
self.mapping = MFC(mapping_layers, dropout, have_bn=True, have_last_bn=True)
self.tag_fc = nn.Linear(mapping_layers[0], tag_vocab_size)
self.tag_fc_batch_norm = nn.BatchNorm1d(tag_vocab_size)
def forward(self, features):
# mapping to concept space
tag_prob = self.tag_fc(features)
tag_prob = self.tag_fc_batch_norm(tag_prob)
concept_features = torch.sigmoid(tag_prob)
# mapping to latent space
latent_features = self.mapping(features)
if self.l2norm:
latent_features = l2norm(latent_features)
return (latent_features, concept_features)
class Latent_mapping(nn.Module):
def __init__(self, mapping_layers, dropout, l2norm=True):
super(Latent_mapping, self).__init__()
self.l2norm = l2norm
self.mapping = MFC(mapping_layers, dropout, have_bn=True, have_last_bn=True)
def forward(self, features):
# mapping to latent space
latent_features = self.mapping(features)
if self.l2norm:
latent_features = l2norm(latent_features)
return latent_features
class BaseModel(object):
def state_dict(self):
state_dict = [self.vid_encoding.state_dict(), self.text_encoding.state_dict()]
return state_dict
def load_state_dict(self, state_dict):
self.vid_encoding.load_state_dict(state_dict[0])
self.text_encoding.load_state_dict(state_dict[1])
def train_start(self):
"""switch to train mode
"""
self.vid_encoding.train()
self.text_encoding.train()
def val_start(self):
"""switch to evaluate mode
"""
self.vid_encoding.eval()
self.text_encoding.eval()
def init_info(self):
# init gpu
if torch.cuda.is_available():
self.vid_encoding.cuda()
self.text_encoding.cuda()
cudnn.benchmark = True
# init params
params = list(self.vid_encoding.parameters())
params += list(self.text_encoding.parameters())
self.params = params
# print structure
print(self.vid_encoding)
print(self.text_encoding)
class Preview_Intensive_Encoding(BaseModel):
"""
dual encoding network
"""
def __init__(self, opt):
# Build Models
self.grad_clip = opt.grad_clip
self.vid_encoding = Video_preview_intensive_encoding(opt)
self.text_encoding = Text_multilevel_encoding(opt)
self.init_info()
# Loss and Optimizer
if opt.loss_fun == 'mrl':
self.criterion = TripletLoss(margin=opt.margin,
measure=opt.measure,
max_violation=opt.max_violation,
cost_style=opt.cost_style,
direction=opt.direction)
if opt.optimizer == 'adam':
self.optimizer = torch.optim.Adam(self.params, lr=opt.learning_rate)
elif opt.optimizer == 'rmsprop':
self.optimizer = torch.optim.RMSprop(self.params, lr=opt.learning_rate)
self.Eiters = 0
self.use_bert = opt.use_bert
def forward_emb(self, videos, targets, volatile=False, *args):
"""Compute the video and caption embeddings
"""
# video data
frames, mean_origin, video_lengths, vidoes_mask = videos
if torch.cuda.is_available():
frames = frames.cuda()
if torch.cuda.is_available():
mean_origin = mean_origin.cuda()
if torch.cuda.is_available():
vidoes_mask = vidoes_mask.cuda()
videos_data = (frames, mean_origin, video_lengths, vidoes_mask)
# text data
captions, cap_bows, cap_bert, lengths, cap_masks = targets
if captions is not None:
if torch.cuda.is_available():
captions = captions.cuda()
if cap_bows is not None:
if torch.cuda.is_available():
cap_bows = cap_bows.cuda()
if cap_masks is not None:
if torch.cuda.is_available():
cap_masks = cap_masks.cuda()
if cap_bert is not None:
if torch.cuda.is_available():
cap_bert = cap_bert.cuda()
text_data = (captions, cap_bows, cap_bert, lengths, cap_masks)
vid_emb_preview, vid_emb_intensive = self.vid_encoding(videos_data)
cap_embs = self.text_encoding(text_data)
return vid_emb_preview, vid_emb_intensive, cap_embs
def embed_vis(self, vis_data, volatile=True):
"""Compute the video embeddings
"""
# video data
frames, mean_origin, video_lengths, vidoes_mask = vis_data
if torch.cuda.is_available():
frames = frames.cuda()
if torch.cuda.is_available():
mean_origin = mean_origin.cuda()
if torch.cuda.is_available():
vidoes_mask = vidoes_mask.cuda()
vis_data = (frames, mean_origin, video_lengths, vidoes_mask)
vid_emb_preview, vid_emb_intensive = self.vid_encoding(vis_data)
return vid_emb_preview, vid_emb_intensive
def embed_txt(self, txt_data):
"""Compute the caption embeddings
"""
# text data
captions, cap_bows, cap_bert, lengths, cap_masks = txt_data
if captions is not None:
if torch.cuda.is_available():
captions = captions.cuda()
if cap_bows is not None:
if torch.cuda.is_available():
cap_bows = cap_bows.cuda()
if cap_masks is not None:
if torch.cuda.is_available():
cap_masks = cap_masks.cuda()
if cap_bert is not None:
if torch.cuda.is_available():
cap_bert = cap_bert.cuda()
txt_data = (captions, cap_bows, cap_bert, lengths, cap_masks)
cap_embs = self.text_encoding(txt_data)
return cap_embs
def forward_loss(self, cap_embs, vid_emb_preview, vid_emb_intensive, *agrs, **kwargs):
"""Compute the loss given pairs of video and caption embeddings
"""
loss = self.criterion(cap_embs[0], vid_emb_preview)
loss += self.criterion(cap_embs[1], vid_emb_intensive)
self.logger.update('Le', loss.item(), vid_emb_preview.size(0))
return loss
def train_emb(self, videos, captions, *args):
"""One training step given videos and captions.
"""
self.Eiters += 1
self.logger.update('Eit', self.Eiters)
self.logger.update('lr', self.optimizer.param_groups[0]['lr'])
# compute the embeddings
vid_emb_preview, vid_emb_intensive, cap_embs = self.forward_emb(videos, captions, False)
# measure accuracy and record loss
self.optimizer.zero_grad()
loss = self.forward_loss(cap_embs, vid_emb_preview, vid_emb_intensive)
loss_value = loss.item()
# compute gradient and do SGD step
loss.backward()
if self.grad_clip > 0:
clip_grad_norm_(self.params, self.grad_clip)
self.optimizer.step()
return vid_emb_preview.size(0), loss_value
class Preview_Intensive_Encoding_Hybrid(Preview_Intensive_Encoding):
"""
dual encoding network
"""
def __init__(self, opt):
# Build Models
self.grad_clip = opt.grad_clip
self.tag_vocab_size = opt.tag_vocab_size
self.loss_fun = opt.loss_fun
self.measure_2 = opt.measure_2
self.space = opt.space
self.vid_encoding = Video_preview_intensive_encoding(opt)
self.text_encoding = Text_multilevel_encoding(opt)
self.init_info()
# Loss and Optimizer
self.triplet_latent_criterion = TripletLoss(margin=opt.margin,
measure=opt.measure,
max_violation=opt.max_violation,
cost_style=opt.cost_style,
direction=opt.direction)
self.triplet_concept_criterion = TripletLoss(margin=opt.margin_2,
measure=opt.measure_2,
max_violation=opt.max_violation,
cost_style=opt.cost_style,
direction=opt.direction)
self.tag_criterion = nn.BCELoss()
if opt.optimizer == 'adam':
self.optimizer = torch.optim.Adam(self.params, lr=opt.learning_rate)
elif opt.optimizer == 'rmsprop':
self.optimizer = torch.optim.RMSprop(self.params, lr=opt.learning_rate)
self.Eiters = 0
def forward_loss(self, cap_emb_preview, cap_emb_intensive, vid_emb_preview, vid_emb_intensive,
cap_tag_prob_preview, cap_tag_prob_intensive, vid_tag_prob_preview, vid_tag_prob_intensive,
target_tag, *agrs, **kwargs):
"""Compute the loss given pairs of video and caption embeddings
"""
# classification on both video and text
if cap_emb_preview is not None:
batch_size = cap_emb_preview.shape[0]
else:
batch_size = vid_tag_prob_preview.shape[0]
loss_1 = self.triplet_latent_criterion(cap_emb_preview, vid_emb_preview)
loss_1 += self.triplet_latent_criterion(cap_emb_intensive, vid_emb_intensive)
loss_2 = self.triplet_concept_criterion(cap_tag_prob_preview, vid_tag_prob_preview)
loss_2 += self.triplet_concept_criterion(cap_tag_prob_intensive, vid_tag_prob_intensive)
loss_3 = self.tag_criterion(vid_tag_prob_preview, target_tag)
loss_3 += self.tag_criterion(vid_tag_prob_intensive, target_tag)
loss_4 = self.tag_criterion(cap_tag_prob_preview, target_tag)
loss_4 += self.tag_criterion(cap_tag_prob_intensive, target_tag)
loss = loss_1 + loss_2 + batch_size * (loss_3 + loss_4)
if vid_emb_preview is not None:
self.logger.update('Le', loss.item(), vid_emb_preview.size(0))
else:
self.logger.update('Le', loss.item(), vid_tag_prob_preview.size(0))
return loss
def train_emb(self, videos, captions, target_tag, *args):
"""One training step given videos and captions.
"""
self.Eiters += 1
self.logger.update('Eit', self.Eiters)
self.logger.update('lr', self.optimizer.param_groups[0]['lr'])
# compute the embeddings
vid_emb_preview_s, vid_emb_intensive_s, cap_embs = self.forward_emb(videos, captions, False)
vid_emb_preview, vid_tag_prob_preview = vid_emb_preview_s
vid_emb_intensive, vid_tag_prob_intensive = vid_emb_intensive_s
cap_emb_preview_s, cap_emb_intensive_s = cap_embs
cap_emb_preview, cap_tag_prob_preview = cap_emb_preview_s
cap_emb_intensive, cap_tag_prob_intensive = cap_emb_intensive_s
target_tag = Variable(target_tag, volatile=False)
if torch.cuda.is_available():
target_tag = target_tag.cuda()
# measure accuracy and record loss
self.optimizer.zero_grad()
loss = self.forward_loss(cap_emb_preview, cap_emb_intensive, vid_emb_preview, vid_emb_intensive, cap_tag_prob_preview,
cap_tag_prob_intensive, vid_tag_prob_preview, vid_tag_prob_intensive, target_tag)
loss_value = loss.item()
# compute gradient and do SGD step
loss.backward()
if self.grad_clip > 0:
clip_grad_norm_(self.params, self.grad_clip)
self.optimizer.step()
if vid_emb_preview is not None:
batch_size = vid_emb_preview.size(0)
else:
batch_size = vid_tag_prob_preview.size(0)
return batch_size, loss_value
def get_pre_tag(self, vid_emb_wo_norm):
pred_prob = vid_emb_wo_norm[:, :self.tag_vocab_size]
pred_prob = torch.sigmoid(pred_prob)
return pred_prob
NAME_TO_MODELS = {'preview_intensive_encoding_latent': Preview_Intensive_Encoding, 'preview_intensive_encoding_hybrid': Preview_Intensive_Encoding_Hybrid}
def get_model(name):
assert name in NAME_TO_MODELS, '%s not supported.' % name
return NAME_TO_MODELS[name]