forked from EPFL-VILAB/TaskDiscovery
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tiny_imagenet.py
173 lines (152 loc) · 6.69 KB
/
tiny_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import os
import pytorch_lightning as pl
from typing import Any, Optional, Union, List
import argparse
import random
from copy import deepcopy
from torch.utils.data import DataLoader, Dataset, random_split, Subset
import glob
from tqdm import tqdm
from torchvision import datasets, transforms
class MyTinyImageNetTrainDataset(datasets.ImageFolder):
def __getitem__(self, index):
return *super().__getitem__(index), index
class MyTinyImageNetValDataset(datasets.ImageFolder):
def __getitem__(self, index):
return *super().__getitem__(index), index + 100000
class MyTinyImageNetTestDataset(datasets.ImageFolder):
def __getitem__(self, index):
return *super().__getitem__(index), index + 100000 + 10000
class TinyImageNetDataModule(pl.LightningDataModule):
def __init__(
self,
dataset_path: Optional[str] = '',
num_workers: int = 16,
batch_size: int = 32,
test_batch_size: Optional[int] = None,
data_seed: int = 42,
shuffle: bool = False,
pin_memory: bool = True,
drop_last: bool = True,
task_type: str = 'real',
random_labelling_seed: Optional[int] = None,
n_classes: int = 2,
persistent_workers: bool = False,
return_indicies: bool = False,
image_size: int = 32,
*args: Any,
**kwargs: Any,
) -> None:
super().__init__()
self.batch_size = batch_size
self.num_workers = num_workers
self.seed = data_seed
self.drop_last = drop_last
self.shuffle = shuffle
self.return_indicies = return_indicies
self.pin_memory=pin_memory
self.dims = (3, image_size, image_size)
self.random_labelling_seed = random_labelling_seed if random_labelling_seed is not None else self.seed
self.task_type = task_type
print(f'[TinyImageNetDatamodule] ===> : Shuffle={shuffle}, Data_seed={data_seed}, Persistent_workers={persistent_workers}, Drop_last={drop_last}')
self._num_classes = n_classes
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
dataset_train_cls = MyTinyImageNetTrainDataset if return_indicies else datasets.ImageFolder
dataset_val_cls = MyTinyImageNetValDataset if return_indicies else datasets.ImageFolder
dataset_test_cls = MyTinyImageNetTestDataset if return_indicies else datasets.ImageFolder
self.dataset_train = dataset_train_cls(
dataset_path + '/train',
transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
normalize,
]))
self.dataset_val = dataset_val_cls(
dataset_path + '/val/images',
transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
normalize,
]))
self.dataset_test = dataset_test_cls(
dataset_path + '/test',
transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
normalize,
]))
self.test_batch_size = test_batch_size or self.batch_size
self.persistent_workers = persistent_workers
@staticmethod
def add_argparse_args(parent_parser):
parser = argparse.ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--data_seed', type=int, default=42)
parser.add_argument('--random_labelling_seed', type=int, default=42)
parser.add_argument('--no-shuffle', dest='shuffle', action='store_false')
parser.set_defaults(shuffle=True)
pasers.add_argument('--n_classes', type=int, default=2)
parser.add_argument('--no_drop_last', dest='drop_last', action='store_false', default=True)
parser.add_argument('--return_indicies', action='store_true', default=False)
parser.add_argument('--persistent_workers', action='store_true', default=False)
parser.add_argument('--dataset_path', type=str, default='')
return parser
@property
def num_classes(self) -> int:
return self._num_classes
def setup(self, stage: Optional[str] = None) -> None:
"""
Creates train, val, and test dataset
"""
# prepare all datasets
super().setup()
def _data_loader(
self,
dataset: torch.utils.data.Dataset,
generator: Any = None,
shuffle: bool = False,
persistent_workers: bool = False,
batch_size: int = None,
drop_last: bool = None,
) -> torch.utils.data.DataLoader:
return torch.utils.data.DataLoader(
dataset,
batch_size=batch_size or self.batch_size,
shuffle=shuffle,
generator=generator,
num_workers=self.num_workers,
drop_last=self.drop_last if drop_last is None else drop_last,
pin_memory=self.pin_memory,
worker_init_fn=TinyImageNetDataModule._worker_init_fn,
persistent_workers=persistent_workers,
)
def train_dataloader(
self,
generator: Optional[torch.Generator] = None,
persistent_workers: bool = False,
batch_size: int = None,
) -> torch.utils.data.DataLoader:
""" The train dataloader """
persistent_workers = persistent_workers or self.persistent_workers
return self._data_loader(self.dataset_train, shuffle=self.shuffle, generator=generator, persistent_workers=persistent_workers, batch_size=batch_size)
def val_dataloader(self, persistent_workers: bool = False, batch_size: int = None) -> torch.utils.data.DataLoader:
""" The val dataloader """
persistent_workers = persistent_workers or self.persistent_workers
batch_size = batch_size or self.test_batch_size
return self._data_loader(self.dataset_val, persistent_workers=persistent_workers, batch_size=batch_size, drop_last=False)
def test_dataloader(self, persistent_workers: bool = False, batch_size: int = None) -> torch.utils.data.DataLoader:
""" The train dataloader """
batch_size = batch_size or self.test_batch_size
return self._data_loader(self.dataset_val, persistent_workers=persistent_workers, batch_size=batch_size, drop_last=False)
@staticmethod
def _worker_init_fn(_id):
seed = torch.utils.data.get_worker_info().seed % 2**32
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)