-
Notifications
You must be signed in to change notification settings - Fork 30
/
stg.py
196 lines (174 loc) · 6.37 KB
/
stg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import comfy.samplers
import comfy.utils
import torch
from comfy.model_patcher import ModelPatcher
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from .nodes_registry import comfy_node
def stg(
noise_pred_pos,
noise_pred_neg,
noise_pred_pertubed,
cfg_scale,
stg_scale,
rescale_scale,
):
noise_pred = (
noise_pred_neg
+ cfg_scale * (noise_pred_pos - noise_pred_neg)
+ stg_scale * (noise_pred_pos - noise_pred_pertubed)
)
if rescale_scale != 0:
factor = noise_pred_pos.std() / noise_pred.std()
factor = rescale_scale * factor + (1 - rescale_scale)
noise_pred = noise_pred * factor
return noise_pred
@comfy_node(name="LTXVApplySTG")
class LTXVApplySTG:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (
"MODEL",
{"tooltip": "The model to apply the STG to."},
),
"stg_mode": (["attention", "residual"],),
"block_indices": (
"STRING",
{
"default": "14, 19",
"tooltip": "Comma-separated indices of the blocks to apply the STG to.",
},
),
}
}
FUNCTION = "apply_stg"
RETURN_TYPES = ("MODEL",)
RETURN_NAMES = ("model",)
CATEGORY = "lightricks/LTXV"
def apply_stg(self, model: ModelPatcher, stg_mode: str, block_indices: str):
skip_block_list = [int(i.strip()) for i in block_indices.split(",")]
stg_mode = (
SkipLayerStrategy.Attention
if stg_mode == "attention"
else SkipLayerStrategy.Residual
)
new_model = model.clone()
new_model.model_options["transformer_options"]["skip_layer_strategy"] = stg_mode
if "skip_block_list" in new_model.model_options["transformer_options"]:
skip_block_list.extend(
new_model.model_options["transformer_options"]["skip_block_list"]
)
new_model.model_options["transformer_options"][
"skip_block_list"
] = skip_block_list
return (new_model,)
class STGGuider(comfy.samplers.CFGGuider):
def set_conds(self, positive, negative):
self.inner_set_conds(
{"positive": positive, "negative": negative, "perturbed": positive}
)
def set_cfg(self, cfg, stg_scale, rescale_scale: float = None):
self.cfg = cfg
self.stg_scale = stg_scale
self.rescale_scale = rescale_scale
def predict_noise(
self,
x: torch.Tensor,
timestep: torch.Tensor,
model_options: dict = {},
seed=None,
):
# in CFGGuider.predict_noise, we call sampling_function(), which uses cfg_function() to compute pos & neg
# but we'd rather do a single batch of sampling pos, neg, and perturbed, so we call calc_cond_batch([perturbed,pos,neg]) directly
perturbed_cond = self.conds.get("perturbed", None)
positive_cond = self.conds.get("positive", None)
negative_cond = self.conds.get("negative", None)
noise_pred_neg = 0
# no similar optimization for stg=0, use CFG guider instead.
if self.cfg > 1:
model_options["transformer_options"]["ptb_index"] = 2
(noise_pred_perturbed, noise_pred_pos, noise_pred_neg) = (
comfy.samplers.calc_cond_batch(
self.inner_model,
[perturbed_cond, positive_cond, negative_cond],
x,
timestep,
model_options,
)
)
else:
model_options["transformer_options"]["ptb_index"] = 1
(noise_pred_perturbed, noise_pred_pos) = comfy.samplers.calc_cond_batch(
self.inner_model,
[perturbed_cond, positive_cond],
x,
timestep,
model_options,
)
stg_result = stg(
noise_pred_pos,
noise_pred_neg,
noise_pred_perturbed,
self.cfg,
self.stg_scale,
self.rescale_scale,
)
# normally this would be done in cfg_function, but we skipped
# that for efficiency: we can compute the noise predictions in
# a single call to calc_cond_batch() (rather than two)
# so we replicate the hook here
for fn in model_options.get("sampler_post_cfg_function", []):
args = {
"denoised": stg_result,
"cond": positive_cond,
"uncond": negative_cond,
"model": self.inner_model,
"uncond_denoised": noise_pred_neg,
"cond_denoised": noise_pred_pos,
"sigma": timestep,
"model_options": model_options,
"input": x,
# not in the original call in samplers.py:cfg_function, but made available for future hooks
"perturbed_cond": positive_cond,
"perturbed_cond_denoised": noise_pred_perturbed,
}
stg_result = fn(args)
return stg_result
@comfy_node(name="STGGuider")
class STGGuiderNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"cfg": (
"FLOAT",
{
"default": 1.0,
"min": 0.0,
"max": 100.0,
"step": 0.1,
"round": 0.01,
},
),
"stg": (
"FLOAT",
{"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01},
),
"rescale": (
"FLOAT",
{"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01},
),
}
}
RETURN_TYPES = ("GUIDER",)
FUNCTION = "get_guider"
CATEGORY = "lightricks/LTXV"
def get_guider(self, model, positive, negative, cfg, stg, rescale):
guider = STGGuider(model)
guider.set_conds(positive, negative)
guider.set_cfg(cfg, stg, rescale)
return (guider,)