forked from hunkim/word-rnn-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbeam.py
103 lines (83 loc) · 4.03 KB
/
beam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import tensorflow as tf
import numpy as np
class BeamSearch():
def __init__(self, predict, initial_state, prime_labels):
"""Initializes the beam search.
Args:
predict:
A function that takes a `sample` and a `state`. It then performs
the computation on the last word in `sample`.
initial_state:
The initial state of the RNN.
prime_labels:
A list of labels corresponding to the priming text. This must
not be empty.
"""
if not prime_labels:
raise ValueError('prime_labels must be a non-empty list.')
self.predict = predict
self.initial_state = initial_state
self.prime_labels = prime_labels
def predict_samples(self, samples, states):
probs = []
next_states = []
for i in range(len(samples)):
prob, next_state = self.predict(samples[i], states[i])
probs.append(prob.squeeze())
next_states.append(next_state)
return np.array(probs), next_states
def search(self, oov, eos, k=1, maxsample=4000, use_unk=False):
"""Return k samples (beams) and their NLL scores.
Each sample is a sequence of labels, either ending with `eos` or
truncated to length of `maxsample`. `use_unk` allow usage of `oov`
(out-of-vocabulary) label in samples
"""
# A list of probabilities of our samples.
probs = []
prime_sample = []
prime_score = 0
prime_state = self.initial_state
# Initialize the live sample with the prime.
for i, label in enumerate(self.prime_labels):
prime_sample.append(label)
# The first word does not contribute to the score as the probs have
# not yet been determined.
if i > 0:
prime_score = prime_score - np.log(probs[0, label])
probs, prime_state = self.predict(prime_sample, prime_state)
dead_k = 0 # samples that reached eos
dead_samples = []
dead_scores = []
dead_states = []
live_k = 1 # samples that did not yet reached eos
live_samples = [prime_sample]
live_scores = [prime_score]
live_states = [prime_state]
while live_k and dead_k < k:
# total score for every sample is sum of -log of word prb
cand_scores = np.array(live_scores)[:, None] - np.log(probs)
if not use_unk and oov is not None:
cand_scores[:, oov] = 1e20
cand_flat = cand_scores.flatten()
# find the best (lowest) scores we have from all possible samples and new words
ranks_flat = cand_flat.argsort()[:(k - dead_k)]
live_scores = cand_flat[ranks_flat]
# append the new words to their appropriate live sample
voc_size = probs.shape[1]
live_samples = [live_samples[r // voc_size] + [r % voc_size] for r in ranks_flat]
live_states = [live_states[r // voc_size] for r in ranks_flat]
# live samples that should be dead are...
zombie = [s[-1] == eos or len(s) >= maxsample for s in live_samples]
# add zombies to the dead
dead_samples += [s for s, z in zip(live_samples, zombie) if z] # remove first label == empty
dead_scores += [s for s, z in zip(live_scores, zombie) if z]
dead_states += [s for s, z in zip(live_states, zombie) if z]
dead_k = len(dead_samples)
# remove zombies from the living
live_samples = [s for s, z in zip(live_samples, zombie) if not z]
live_scores = [s for s, z in zip(live_scores, zombie) if not z]
live_states = [s for s, z in zip(live_states, zombie) if not z]
live_k = len(live_samples)
# Finally, compute the next-step probabilities and states.
probs, live_states = self.predict_samples(live_samples, live_states)
return dead_samples + live_samples, dead_scores + live_scores