-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathplay_llm_game.py
219 lines (172 loc) · 8.08 KB
/
play_llm_game.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
import argparse
from copy import deepcopy
import json
import glob
from dataclasses import dataclass
from typing import Dict, Sequence
from tqdm import tqdm
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import Dataset, DataLoader
import transformers
from transformers import GenerationConfig, AutoModelForCausalLM, AutoTokenizer
from arguments import CustomTrainingArguments
from utils import print_rank_0, read_json_or_jsonl_data
from utils import DEFAULT_PAD_TOKEN, DEFAULT_EOS_TOKEN, DEFAULT_BOS_TOKEN, DEFAULT_UNK_TOKEN
from utils import convert_game_history_to_query, set_special_tokens
from dataloaders import batch_padding
def load_keyword_list(args, data_path):
with open(data_path, 'r') as f:
keywords = f.read().strip().split('\n')
return keywords
def query_data_collactor(args, batch, tokenizer):
input_ids, attention_mask, labels = [], [], []
text = [item['query'] for item in batch]
query_ids = [item['query_id'] for item in batch]
for sent in text:
input_query_ids = [tokenizer.bos_token_id] + tokenizer.encode(sent, add_special_tokens=False)
input_ids.append(input_query_ids)
outputs = batch_padding(
input_ids,
tokenizer,
max_length=tokenizer.model_max_length - args.max_new_tokens
)
outputs['query_ids'] = query_ids
outputs['text'] = text
return outputs
def load_model_and_tokenizer(args, model_name_or_path):
print_rank_0(f"start loading model from {model_name_or_path}")
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
trust_remote_code=True,
use_cache=True,
torch_dtype=torch.float16,
# device_map='auto'
)
if hasattr(model, 'ref_model'):
del model.ref_model
print_rank_0(model)
device = torch.cuda.current_device()
model.to(device)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(
model_name_or_path,
padding_side="left", # for batch decode
truncation_side='left',
model_max_length=args.max_length,
trust_remote_code=True
)
model, tokenizer = set_special_tokens(model, tokenizer)
return {"model": model, "tokenizer": tokenizer}
def main():
parser = transformers.HfArgumentParser(CustomTrainingArguments)
args = parser.parse_args_into_dataclasses()[0]
eval_dataset = load_keyword_list(args, args.data_path)
# setup model
#---------------------------------------------------------------------------------
players = dict()
players['attacker'] = load_model_and_tokenizer(args, args.attacker_model_name_or_path)
if args.attacker_model_name_or_path == args.defender_model_name_or_path:
players['defender'] = players['attacker']
else:
players['defender'] = load_model_and_tokenizer(args, args.defender_model_name_or_path)
sampler = torch.utils.data.distributed.DistributedSampler(eval_dataset, shuffle=True)
dataloader = DataLoader(
eval_dataset,
shuffle=False,
batch_size=args.per_device_eval_batch_size,
sampler=sampler,
)
all_outputs = []
progress_bar = tqdm(range(len(dataloader)), disable=(dist.get_rank() != 0))
for step, batch_words in enumerate(dataloader):
progress_bar.update(1)
batch_games = [
{"history": [], "target_word": keyword, "max_turns": args.taboo_max_turns}
for keyword in batch_words
]
for taboo_turn in range(2 * args.taboo_max_turns):
next_player = "attacker" if taboo_turn % 2 == 0 else "defender"
model, tokenizer = players[next_player]['model'], players[next_player]['tokenizer']
if args.task_type == "testing":
generation_config = GenerationConfig(
max_new_tokens=args.max_new_tokens,
do_sample=False,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
num_return_sequences=1,
)
elif args.task_type == "sampling":
generation_config = GenerationConfig(
max_new_tokens=args.max_new_tokens,
temperature=1.2, # default=0.8
do_sample=True,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
num_return_sequences=1,
)
batch_queries = [{
"query": convert_game_history_to_query(
game['history'],
target_word=game['target_word'],
max_turns=game['max_turns']
),
"query_id": game['target_word']
} for game in batch_games]
batch = query_data_collactor(args, batch_queries, tokenizer)
input_ids = torch.Tensor(batch['input_ids']).long().to(model.device)
attention_mask = torch.Tensor(batch['attention_mask']).float().to(model.device)
query_ids = batch['query_ids']
text = batch['text']
batch_size = input_ids.shape[0]
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
generation_config=generation_config,
return_dict_in_generate=True,
)
output_seq = generation_output.sequences.reshape(batch_size, generation_config.num_return_sequences, -1)
inputs_string = tokenizer.batch_decode(input_ids.reshape(batch_size, -1), skip_special_tokens=True)
finished_ids = []
for idx in range(batch_size):
output_response = tokenizer.batch_decode(output_seq[idx], skip_special_tokens=True)[0] #only consider one sample
response_sample = output_response.replace(inputs_string[idx], '').split(tokenizer.eos_token)[0]
batch_games[idx]['history'].append({'role': next_player, 'content': response_sample})
if "i know the word" in response_sample.lower() and next_player == 'defender':
# early stop to speed up inference
all_outputs.append(batch_games[idx])
finished_ids.append(idx)
batch_games = [game for idx, game in enumerate(batch_games) if idx not in finished_ids]
if len(batch_games) == 0:
break
all_outputs.extend(batch_games)
if dist.get_rank() == 0 and (step % args.logging_steps == 0):
print_rank_0(f"finished {step} of {len(dataloader)}")
print_rank_0(all_outputs[-1])
output_file_prefix = f"{args.output_dir}/{args.model_prefix}_{args.task_type}_{args.data_suffix}"
with open(f"{output_file_prefix}_rank{dist.get_rank()}.json", 'w') as f:
json.dump(all_outputs, f, ensure_ascii=False, indent=2)
print(f"rank {dist.get_rank()} finishs inference.")
if 'model' in players['attacker']:
del players['attacker']['model']
if 'model' in players['defender']:
del players['defender']['model']
torch.cuda.empty_cache()
dist.barrier()
if dist.get_rank() == 0:
result_paths = glob.glob(f"{output_file_prefix}_rank*.json")
all_results = []
for res_path in result_paths:
new_results = read_json_or_jsonl_data(res_path)
all_results.extend(new_results)
print(f"totally loaded {len(all_results)} results")
with open(f"{output_file_prefix}_results.json", 'w') as f:
json.dump(all_results, f, ensure_ascii=False, indent=2)
print(f"finished inference results merge.")
if __name__ == "__main__":
main()