forked from jmiller656/EDSR-Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
executable file
·85 lines (78 loc) · 2.66 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import tensorflow as tf
import tensorflow.contrib.slim as slim
"""
Creates a convolutional residual block
as defined in the paper. More on
this inside model.py
x: input to pass through the residual block
channels: number of channels to compute
stride: convolution stride
"""
def resBlock(x,channels=64,kernel_size=[3,3],scale=1):
tmp = slim.conv2d(x,channels,kernel_size,activation_fn=None)
tmp = tf.nn.relu(tmp)
tmp = slim.conv2d(tmp,channels,kernel_size,activation_fn=None)
tmp *= scale
return x + tmp
"""
Method to upscale an image using
conv2d transpose. Based on upscaling
method defined in the paper
x: input to be upscaled
scale: scale increase of upsample
features: number of features to compute
activation: activation function
"""
def upsample(x,scale=2,features=64,activation=tf.nn.relu):
assert scale in [2,3,4]
x = slim.conv2d(x,features,[3,3],activation_fn=activation)
if scale == 2:
ps_features = 3*(scale**2)
x = slim.conv2d(x,ps_features,[3,3],activation_fn=activation)
#x = slim.conv2d_transpose(x,ps_features,6,stride=1,activation_fn=activation)
x = PS(x,2,color=True)
elif scale == 3:
ps_features =3*(scale**2)
x = slim.conv2d(x,ps_features,[3,3],activation_fn=activation)
#x = slim.conv2d_transpose(x,ps_features,9,stride=1,activation_fn=activation)
x = PS(x,3,color=True)
elif scale == 4:
ps_features = 3*(2**2)
for i in range(2):
x = slim.conv2d(x,ps_features,[3,3],activation_fn=activation)
#x = slim.conv2d_transpose(x,ps_features,6,stride=1,activation_fn=activation)
x = PS(x,2,color=True)
return x
"""
Borrowed from https://github.com/tetrachrome/subpixel
Used for subpixel phase shifting after deconv operations
"""
def _phase_shift(I, r):
bsize, a, b, c = I.get_shape().as_list()
bsize = tf.shape(I)[0] # Handling Dimension(None) type for undefined batch dim
X = tf.reshape(I, (bsize, a, b, r, r))
X = tf.transpose(X, (0, 1, 2, 4, 3)) # bsize, a, b, 1, 1
X = tf.split(X, a, 1) # a, [bsize, b, r, r]
X = tf.concat([tf.squeeze(x, axis=1) for x in X],2) # bsize, b, a*r, r
X = tf.split(X, b, 1) # b, [bsize, a*r, r]
X = tf.concat([tf.squeeze(x, axis=1) for x in X],2) # bsize, a*r, b*r
return tf.reshape(X, (bsize, a*r, b*r, 1))
"""
Borrowed from https://github.com/tetrachrome/subpixel
Used for subpixel phase shifting after deconv operations
"""
def PS(X, r, color=False):
if color:
Xc = tf.split(X, 3, 3)
X = tf.concat([_phase_shift(x, r) for x in Xc],3)
else:
X = _phase_shift(X, r)
return X
"""
Tensorflow log base 10.
Found here: https://github.com/tensorflow/tensorflow/issues/1666
"""
def log10(x):
numerator = tf.log(x)
denominator = tf.log(tf.constant(10, dtype=numerator.dtype))
return numerator / denominator