-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
ultra_face_opencvdnn_inference.py
184 lines (158 loc) · 7.26 KB
/
ultra_face_opencvdnn_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# coding=utf-8
import argparse
import os
import time
from math import ceil
import cv2
import numpy as np
from cv2 import dnn
parser = argparse.ArgumentParser()
parser.add_argument('--caffe_prototxt_path', default="model/RFB-320/RFB-320.prototxt", type=str, help='caffe_prototxt_path')
parser.add_argument('--caffe_model_path', default="model/RFB-320/RFB-320.caffemodel", type=str, help='caffe_model_path')
parser.add_argument('--onnx_path', default="../models/onnx/version-RFB-320_simplified.onnx", type=str, help='onnx version')
parser.add_argument('--input_size', default="320,240", type=str, help='define network input size,format: width,height')
parser.add_argument('--threshold', default=0.7, type=float, help='score threshold')
parser.add_argument('--imgs_path', default="../MNN/imgs", type=str, help='imgs dir')
parser.add_argument('--results_path', default="results", type=str, help='results dir')
args = parser.parse_args()
image_mean = np.array([127, 127, 127])
image_std = 128.0
iou_threshold = 0.3
center_variance = 0.1
size_variance = 0.2
min_boxes = [[10.0, 16.0, 24.0], [32.0, 48.0], [64.0, 96.0], [128.0, 192.0, 256.0]]
strides = [8.0, 16.0, 32.0, 64.0]
def define_img_size(image_size):
shrinkage_list = []
feature_map_w_h_list = []
for size in image_size:
feature_map = [int(ceil(size / stride)) for stride in strides]
feature_map_w_h_list.append(feature_map)
for i in range(0, len(image_size)):
shrinkage_list.append(strides)
priors = generate_priors(feature_map_w_h_list, shrinkage_list, image_size, min_boxes)
return priors
def generate_priors(feature_map_list, shrinkage_list, image_size, min_boxes):
priors = []
for index in range(0, len(feature_map_list[0])):
scale_w = image_size[0] / shrinkage_list[0][index]
scale_h = image_size[1] / shrinkage_list[1][index]
for j in range(0, feature_map_list[1][index]):
for i in range(0, feature_map_list[0][index]):
x_center = (i + 0.5) / scale_w
y_center = (j + 0.5) / scale_h
for min_box in min_boxes[index]:
w = min_box / image_size[0]
h = min_box / image_size[1]
priors.append([
x_center,
y_center,
w,
h
])
print("priors nums:{}".format(len(priors)))
return np.clip(priors, 0.0, 1.0)
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
scores = box_scores[:, -1]
boxes = box_scores[:, :-1]
picked = []
indexes = np.argsort(scores)
indexes = indexes[-candidate_size:]
while len(indexes) > 0:
current = indexes[-1]
picked.append(current)
if 0 < top_k == len(picked) or len(indexes) == 1:
break
current_box = boxes[current, :]
indexes = indexes[:-1]
rest_boxes = boxes[indexes, :]
iou = iou_of(
rest_boxes,
np.expand_dims(current_box, axis=0),
)
indexes = indexes[iou <= iou_threshold]
return box_scores[picked, :]
def area_of(left_top, right_bottom):
hw = np.clip(right_bottom - left_top, 0.0, None)
return hw[..., 0] * hw[..., 1]
def iou_of(boxes0, boxes1, eps=1e-5):
overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:])
overlap_area = area_of(overlap_left_top, overlap_right_bottom)
area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
return overlap_area / (area0 + area1 - overlap_area + eps)
def predict(width, height, confidences, boxes, prob_threshold, iou_threshold=0.3, top_k=-1):
boxes = boxes[0]
confidences = confidences[0]
picked_box_probs = []
picked_labels = []
for class_index in range(1, confidences.shape[1]):
probs = confidences[:, class_index]
mask = probs > prob_threshold
probs = probs[mask]
if probs.shape[0] == 0:
continue
subset_boxes = boxes[mask, :]
box_probs = np.concatenate([subset_boxes, probs.reshape(-1, 1)], axis=1)
box_probs = hard_nms(box_probs,
iou_threshold=iou_threshold,
top_k=top_k,
)
picked_box_probs.append(box_probs)
picked_labels.extend([class_index] * box_probs.shape[0])
if not picked_box_probs:
return np.array([]), np.array([]), np.array([])
picked_box_probs = np.concatenate(picked_box_probs)
picked_box_probs[:, 0] *= width
picked_box_probs[:, 1] *= height
picked_box_probs[:, 2] *= width
picked_box_probs[:, 3] *= height
return picked_box_probs[:, :4].astype(np.int32), np.array(picked_labels), picked_box_probs[:, 4]
def convert_locations_to_boxes(locations, priors, center_variance,
size_variance):
if len(priors.shape) + 1 == len(locations.shape):
priors = np.expand_dims(priors, 0)
return np.concatenate([
locations[..., :2] * center_variance * priors[..., 2:] + priors[..., :2],
np.exp(locations[..., 2:] * size_variance) * priors[..., 2:]
], axis=len(locations.shape) - 1)
def center_form_to_corner_form(locations):
return np.concatenate([locations[..., :2] - locations[..., 2:] / 2,
locations[..., :2] + locations[..., 2:] / 2], len(locations.shape) - 1)
def inference():
net = dnn.readNetFromONNX(args.onnx_path) # onnx version
# net = dnn.readNetFromCaffe(args.caffe_prototxt_path, args.caffe_model_path) # caffe model converted from onnx
input_size = [int(v.strip()) for v in args.input_size.split(",")]
witdh = input_size[0]
height = input_size[1]
priors = define_img_size(input_size)
result_path = args.results_path
imgs_path = args.imgs_path
if not os.path.exists(result_path):
os.makedirs(result_path)
listdir = os.listdir(imgs_path)
for file_path in listdir:
img_path = os.path.join(imgs_path, file_path)
img_ori = cv2.imread(img_path)
rect = cv2.resize(img_ori, (witdh, height))
rect = cv2.cvtColor(rect, cv2.COLOR_BGR2RGB)
net.setInput(dnn.blobFromImage(rect, 1 / image_std, (witdh, height), 127))
time_time = time.time()
boxes, scores = net.forward(["boxes", "scores"])
print("inference time: {} s".format(round(time.time() - time_time, 4)))
boxes = np.expand_dims(np.reshape(boxes, (-1, 4)), axis=0)
scores = np.expand_dims(np.reshape(scores, (-1, 2)), axis=0)
boxes = convert_locations_to_boxes(boxes, priors, center_variance, size_variance)
boxes = center_form_to_corner_form(boxes)
boxes, labels, probs = predict(img_ori.shape[1], img_ori.shape[0], scores, boxes, args.threshold)
for i in range(boxes.shape[0]):
box = boxes[i, :]
cv2.rectangle(img_ori, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
cv2.imwrite(os.path.join(result_path, file_path), img_ori)
print("result_pic is written to {}".format(os.path.join(result_path, file_path)))
cv2.imshow("ultra_face_ace_opencvdnn_py", img_ori)
cv2.waitKey(-1)
cv2.destroyAllWindows()
if __name__ == '__main__':
inference()