Skip to content

Latest commit

 

History

History
91 lines (64 loc) · 3.19 KB

QUICK_STARTED.md

File metadata and controls

91 lines (64 loc) · 3.19 KB

English | 简体中文

Quick Start

In order to enable users to experience PaddleDetection and produce models in a short time, this tutorial introduces the pipeline to get a decent object detection model by finetuning on a small dataset in 10 minutes only. In practical applications, it is recommended that users select a suitable model configuration file for their specific demand.

  • Set GPU
export CUDA_VISIBLE_DEVICES=0

Inference Demo with Pre-trained Models

# predict an image using PP-YOLO
python tools/infer.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o use_gpu=true weights=https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams --infer_img=demo/000000014439.jpg

the result:

Data preparation

The Dataset is Kaggle dataset ,including 877 images and 4 data categories: crosswalk, speedlimit, stop, trafficlight. The dataset is divided into training set (701 images) and test set (176 images),download link.

# Note: this command could skip and
# the dataset will be dowloaded automatically at the stage of training.
python dataset/roadsign_voc/download_roadsign_voc.py

Training & Evaluation & Inference

1、Training

# It will takes about 10 minutes on 1080Ti and 1 hour on CPU
# -c set configuration file
# -o overwrite the settings in the configuration file
# --eval Evaluate while training, and a model named best_model.pdmodel with the most evaluation results will be automatically saved


python tools/train.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml --eval -o use_gpu=true

If you want to observe the loss change curve in real time through VisualDL, add --use_vdl=true to the training command, and set the log save path through --vdl_log_dir.

Note: VisualDL need Python>=3.5

Please install VisualDL first

python -m pip install visualdl -i https://mirror.baidu.com/pypi/simple
python -u tools/train.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml \
                        --use_vdl=true \
                        --vdl_log_dir=vdl_dir/scalar \
                        --eval

View the change curve in real time through the visualdl command:

visualdl --logdir vdl_dir/scalar/ --host <host_IP> --port <port_num>

2、Evaluation

# Evaluate best_model by default
# -c set config file
# -o overwrite the settings in the configuration file

python tools/eval.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true

The final mAP should be around 0.85. The dataset is small so the precision may vary a little after each training.

3、Inference

# -c set config file
# -o overwrite the settings in the configuration file
# --infer_img image path
# After the prediction is over, an image of the same name with the prediction result will be generated in the output folder

python tools/infer.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true --infer_img=demo/road554.png

The result is as shown below: