-
Notifications
You must be signed in to change notification settings - Fork 108
/
train_fnn_on_movielens_estimator.py
96 lines (75 loc) · 3.72 KB
/
train_fnn_on_movielens_estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import tensorflow as tf
from deep_recommenders.datasets import MovielensRanking
from deep_recommenders.estimator.models.ranking import FNN
def build_columns():
movielens = MovielensRanking()
user_id = tf.feature_column.categorical_column_with_hash_bucket(
"user_id", movielens.num_users)
user_gender = tf.feature_column.categorical_column_with_vocabulary_list(
"user_gender", movielens.gender_vocab)
user_age = tf.feature_column.categorical_column_with_vocabulary_list(
"user_age", movielens.age_vocab)
user_occupation = tf.feature_column.categorical_column_with_vocabulary_list(
"user_occupation", movielens.occupation_vocab)
movie_id = tf.feature_column.categorical_column_with_hash_bucket(
"movie_id", movielens.num_movies)
movie_genres = tf.feature_column.categorical_column_with_vocabulary_list(
"movie_genres", movielens.gender_vocab)
base_columns = [user_id, user_gender, user_age, user_occupation, movie_id, movie_genres]
indicator_columns = [
tf.feature_column.indicator_column(c)
for c in base_columns
]
embedding_columns = [
tf.feature_column.embedding_column(c, dimension=16)
for c in base_columns
]
return indicator_columns, embedding_columns
def model_fn(features, labels, mode, params):
indicator_columns, embedding_columns = build_columns()
fnn = FNN(indicator_columns, embedding_columns, params["warm_up_from_fm"], [64, 32])
outputs = fnn(features)
predictions = {"predictions": outputs}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode, predictions=predictions)
loss = tf.losses.log_loss(labels, outputs)
metrics = {"auc": tf.metrics.auc(labels, outputs)}
if mode == tf.estimator.ModeKeys.EVAL:
return tf.estimator.EstimatorSpec(mode, loss=loss, eval_metric_ops=metrics)
optimizer = tf.train.AdamOptimizer(learning_rate=0.01)
train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
def build_estimator(params, model_dir=None, inter_op=8, intra_op=8):
config_proto = tf.ConfigProto(device_count={'GPU': 0},
inter_op_parallelism_threads=inter_op,
intra_op_parallelism_threads=intra_op)
run_config = tf.estimator.RunConfig().replace(
tf_random_seed=42,
keep_checkpoint_max=10,
save_checkpoints_steps=1000,
log_step_count_steps=100,
session_config=config_proto)
return tf.estimator.Estimator(model_fn=model_fn,
model_dir=model_dir,
config=run_config,
params=params)
def main():
tf.logging.set_verbosity(tf.logging.INFO)
# First: train FM model with movielens
# eg. python train_fm_on_movielens_estimator.py
# Second: warm up from FM model.
estimator = build_estimator({"warm_up_from_fm": "FM"})
early_stop_hook = tf.estimator.experimental.stop_if_no_decrease_hook(estimator, "loss", 1000)
movielens = MovielensRanking()
train_spec = tf.estimator.TrainSpec(lambda: movielens.training_input_fn,
max_steps=None,
hooks=[early_stop_hook])
eval_spec = tf.estimator.EvalSpec(lambda: movielens.testing_input_fn,
steps=None,
start_delay_secs=0,
throttle_secs=0)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
if __name__ == '__main__':
main()