-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathconfig.py
73 lines (61 loc) · 2.14 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Copyright 2021 Dakewe Biotech Corporation. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Realize the parameter configuration function of dataset, model, training and verification code."""
import random
import numpy as np
import torch
from torch.backends import cudnn
# Random seed to maintain reproducible results
random.seed(0)
torch.manual_seed(0)
np.random.seed(0)
# Use GPU for training by default
device = torch.device("cuda", 0)
# Turning on when the image size does not change during training can speed up training
cudnn.benchmark = True
# Image magnification factor
upscale_factor = 2
# Current configuration parameter method
mode = "train"
# Experiment name, easy to save weights and log files
exp_name = "vdsr_baseline"
if mode == "train":
# Dataset
train_image_dir = "data/TB291/VDSR/train"
valid_image_dir = "data/TB291/VDSR/valid"
test_image_dir = "data/Set5/GTmod12"
image_size = 41
batch_size = 16
num_workers = 4
# Incremental training and migration training
start_epoch = 0
resume = ""
# Total num epochs
epochs = 80
# SGD optimizer parameter
model_lr = 0.1
model_momentum = 0.9
model_weight_decay = 1e-4
model_nesterov = False
# StepLR scheduler parameter
lr_scheduler_step_size = epochs // 4
lr_scheduler_gamma = 0.1
# gradient clipping constant
clip_gradient = 0.01
print_frequency = 200
if mode == "valid":
# Test data address
sr_dir = f"results/test/{exp_name}"
hr_dir = f"data/Set5/GTmod12"
model_path = f"results/{exp_name}/best.pth.tar"