forked from real-stanford/diffusion_policy
-
Notifications
You must be signed in to change notification settings - Fork 2
/
eval.py
66 lines (57 loc) · 2.13 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
"""
Usage:
python eval.py --checkpoint data/image/pusht/diffusion_policy_cnn/train_0/checkpoints/latest.ckpt -o data/pusht_eval_output
"""
import sys
# use line-buffering for both stdout and stderr
sys.stdout = open(sys.stdout.fileno(), mode='w', buffering=1)
sys.stderr = open(sys.stderr.fileno(), mode='w', buffering=1)
import os
import pathlib
import click
import hydra
import torch
import dill
import wandb
import json
from diffusion_policy.workspace.base_workspace import BaseWorkspace
@click.command()
@click.option('-c', '--checkpoint', required=True)
@click.option('-o', '--output_dir', required=True)
@click.option('-d', '--device', default='cuda:0')
def main(checkpoint, output_dir, device):
if os.path.exists(output_dir):
click.confirm(f"Output path {output_dir} already exists! Overwrite?", abort=True)
pathlib.Path(output_dir).mkdir(parents=True, exist_ok=True)
# load checkpoint
payload = torch.load(open(checkpoint, 'rb'), pickle_module=dill)
cfg = payload['cfg']
cfg._target_ = cfg._target_.replace('train_ae_diffusion', 'train_crossway_diffusion')
cfg.policy._target_ = cfg.policy._target_.replace('ae_diffusion', 'crossway_diffusion')
cls = hydra.utils.get_class(cfg._target_)
workspace = cls(cfg, output_dir=output_dir)
workspace: BaseWorkspace
workspace.load_payload(payload, exclude_keys=None, include_keys=None)
# get policy from workspace
policy = workspace.model
if cfg.training.use_ema:
policy = workspace.ema_model
device = torch.device(device)
policy.to(device)
policy.eval()
# run eval
env_runner = hydra.utils.instantiate(
cfg.task.env_runner,
output_dir=output_dir)
runner_log = env_runner.run(policy)
# dump log to json
json_log = dict()
for key, value in runner_log.items():
if isinstance(value, wandb.sdk.data_types.video.Video):
json_log[key] = value._path
else:
json_log[key] = value
out_path = os.path.join(output_dir, 'eval_log.json')
json.dump(json_log, open(out_path, 'w'), indent=2, sort_keys=True)
if __name__ == '__main__':
main()