diff --git a/Jenkinsfile b/Jenkinsfile index b0e263c51360c..7e21dc08eb838 100755 --- a/Jenkinsfile +++ b/Jenkinsfile @@ -45,11 +45,11 @@ // 'python3 jenkins/generate.py' // Note: This timestamp is here to ensure that updates to the Jenkinsfile are // always rebased on main before merging: -// Generated at 2022-04-07T13:50:22.427152 +// Generated at 2022-04-11T10:45:26.226802 import org.jenkinsci.plugins.pipeline.modeldefinition.Utils // NOTE: these lines are scanned by docker/dev_common.sh. Please update the regex as needed. --> -ci_lint = 'tlcpack/ci-lint:v0.69' +ci_lint = 'tlcpack/ci-lint:v0.71' ci_gpu = 'tlcpack/ci-gpu:v0.84' ci_cpu = 'tlcpack/ci-cpu:v0.83' ci_wasm = 'tlcpack/ci-wasm:v0.73' diff --git a/apps/topi_recipe/gemm/android_gemm_square.py b/apps/topi_recipe/gemm/android_gemm_square.py index 2d50dd7e8da02..5f13d887070db 100644 --- a/apps/topi_recipe/gemm/android_gemm_square.py +++ b/apps/topi_recipe/gemm/android_gemm_square.py @@ -34,7 +34,7 @@ def ngflops(N): - return 2.0 * float(N * N * N) / (10 ** 9) + return 2.0 * float(N * N * N) / (10**9) dtype = "float32" diff --git a/jenkins/Jenkinsfile.j2 b/jenkins/Jenkinsfile.j2 index 1a61d140c3f7b..6b306e99e76bc 100644 --- a/jenkins/Jenkinsfile.j2 +++ b/jenkins/Jenkinsfile.j2 @@ -51,7 +51,7 @@ import org.jenkinsci.plugins.pipeline.modeldefinition.Utils {% import 'jenkins/macros.j2' as m with context -%} // NOTE: these lines are scanned by docker/dev_common.sh. Please update the regex as needed. --> -ci_lint = 'tlcpack/ci-lint:v0.69' +ci_lint = 'tlcpack/ci-lint:v0.71' ci_gpu = 'tlcpack/ci-gpu:v0.84' ci_cpu = 'tlcpack/ci-cpu:v0.83' ci_wasm = 'tlcpack/ci-wasm:v0.73' diff --git a/python/tvm/autotvm/task/space.py b/python/tvm/autotvm/task/space.py index 8a707b872113f..4d6b23162a25b 100644 --- a/python/tvm/autotvm/task/space.py +++ b/python/tvm/autotvm/task/space.py @@ -187,7 +187,7 @@ def get_pow2s(n): factors: list List of all power-of-two numbers """ - return [2 ** x for x in range(math.floor(math.log2(n)) + 1)] + return [2**x for x in range(math.floor(math.log2(n)) + 1)] class SplitSpace(TransformSpace): diff --git a/python/tvm/contrib/debugger/debug_result.py b/python/tvm/contrib/debugger/debug_result.py index e53aa298a0f41..8185391e35519 100644 --- a/python/tvm/contrib/debugger/debug_result.py +++ b/python/tvm/contrib/debugger/debug_result.py @@ -154,7 +154,7 @@ def dump_chrome_trace(self): """Dump the trace to the Chrome trace.json format.""" def s_to_us(t): - return t * 10 ** 6 + return t * 10**6 starting_times = np.zeros(len(self._time_list) + 1) starting_times[1:] = np.cumsum([times[0] for times in self._time_list]) diff --git a/python/tvm/relay/frontend/paddlepaddle.py b/python/tvm/relay/frontend/paddlepaddle.py index 108482691160b..d85f98a8471f9 100644 --- a/python/tvm/relay/frontend/paddlepaddle.py +++ b/python/tvm/relay/frontend/paddlepaddle.py @@ -658,7 +658,7 @@ def convert_gelu(g, op, block): x = g.get_node(op.input("X")[0]) out = x * ( _expr.const(0.5, dtype="float32") - + _op.erf(x * _expr.const(0.5 ** 0.5, dtype="float32")) * _expr.const(0.5, dtype="float32") + + _op.erf(x * _expr.const(0.5**0.5, dtype="float32")) * _expr.const(0.5, dtype="float32") ) g.add_node(op.output("Out")[0], out) diff --git a/python/tvm/relay/frontend/pytorch.py b/python/tvm/relay/frontend/pytorch.py index 361b4f86c0380..9984a4454a161 100644 --- a/python/tvm/relay/frontend/pytorch.py +++ b/python/tvm/relay/frontend/pytorch.py @@ -827,7 +827,7 @@ def gelu(self, inputs, input_types): # with tanh and third order polynomials, but this is "true" gelu return data * ( _expr.const(0.5, dtype=dtype) - + _op.erf(data * _expr.const(0.5 ** 0.5, dtype=dtype)) * _expr.const(0.5, dtype=dtype) + + _op.erf(data * _expr.const(0.5**0.5, dtype=dtype)) * _expr.const(0.5, dtype=dtype) ) def selu(self, inputs, input_types): diff --git a/python/tvm/relay/qnn/op/canonicalizations.py b/python/tvm/relay/qnn/op/canonicalizations.py index 95e0cb60368de..1f2c57c6da342 100644 --- a/python/tvm/relay/qnn/op/canonicalizations.py +++ b/python/tvm/relay/qnn/op/canonicalizations.py @@ -75,7 +75,7 @@ def create_integer_lookup_table( # inputs_quantized = np.array(range(dtype_info.min, dtype_info.max + 1)).astype(in_dtype) # First generate a list of all num_bit integer patterns - inputs_quantized = np.array(range(0, 2 ** num_bits), dtype=f"uint{num_bits}") + inputs_quantized = np.array(range(0, 2**num_bits), dtype=f"uint{num_bits}") # Reinterpret bits as the real datatype # Note what we are doing here is a bit tricky, the canonical view of our lookup table diff --git a/python/tvm/relay/quantize/_calibrate.py b/python/tvm/relay/quantize/_calibrate.py index ae3a846c11ed5..4b2d55ebe8649 100644 --- a/python/tvm/relay/quantize/_calibrate.py +++ b/python/tvm/relay/quantize/_calibrate.py @@ -159,7 +159,7 @@ def visit_func(expr): def _make_const(val): return _expr.const(val, "float32") - valid_range = 2 ** valid_bit + valid_range = 2**valid_bit const_params[ndom_scale] = _make_const(scale / valid_range) const_params[nclip_min] = _make_const(-(valid_range - 1)) const_params[nclip_max] = _make_const((valid_range - 1)) diff --git a/python/tvm/relay/testing/tf.py b/python/tvm/relay/testing/tf.py index b711208597a38..e09111a205048 100644 --- a/python/tvm/relay/testing/tf.py +++ b/python/tvm/relay/testing/tf.py @@ -321,7 +321,7 @@ def pick_from_weight(weight, pows=1.0): """Identify token from Softmax output. This token will be mapped to word in the vocabulary. """ - weight = weight ** pows + weight = weight**pows t = np.cumsum(weight) s = np.sum(weight) return int(np.searchsorted(t, 0.5 * s)) diff --git a/python/tvm/testing/utils.py b/python/tvm/testing/utils.py index 3043dabbed333..eeb9c35b4a853 100644 --- a/python/tvm/testing/utils.py +++ b/python/tvm/testing/utils.py @@ -218,7 +218,7 @@ def compare_derivative(j, n_der, grad): wrong_percentage = int(100 * len(wrong_positions) / np.prod(grad.shape)) dist = np.sqrt(np.sum((ngrad - grad) ** 2)) - grad_norm = np.sqrt(np.sum(ngrad ** 2)) + grad_norm = np.sqrt(np.sum(ngrad**2)) if not (np.isfinite(dist) and np.isfinite(grad_norm)): raise ValueError( diff --git a/python/tvm/tir/schedule/_type_checker.py b/python/tvm/tir/schedule/_type_checker.py index c815282b74fc2..1b86c4aa30db2 100644 --- a/python/tvm/tir/schedule/_type_checker.py +++ b/python/tvm/tir/schedule/_type_checker.py @@ -57,7 +57,6 @@ def union(type_: Any) -> Optional[List[type]]: return list(subtypes) return None - elif hasattr(typing, "_Union"): class _Subtype: # type: ignore diff --git a/python/tvm/topi/gpu/dense.py b/python/tvm/topi/gpu/dense.py index 4dce6eec90ccd..5f2f36c46bf59 100644 --- a/python/tvm/topi/gpu/dense.py +++ b/python/tvm/topi/gpu/dense.py @@ -153,8 +153,8 @@ def _schedule_dense_large_batch(cfg, s, C): # create tuning space try: block_cand = [64, 128] - vthread_cand = [2 ** x for x in range(1, 7)] - n_thread_cand = [2 ** x for x in range(3, 7)] + vthread_cand = [2**x for x in range(1, 7)] + n_thread_cand = [2**x for x in range(3, 7)] cfg.define_split( "tile_x", batch, diff --git a/python/tvm/topi/random/kernel.py b/python/tvm/topi/random/kernel.py index 64afcf066c11b..11c2480d3d3c0 100644 --- a/python/tvm/topi/random/kernel.py +++ b/python/tvm/topi/random/kernel.py @@ -233,7 +233,7 @@ def threefry_generate(gen, out_shape): for s in out_shape: out_len *= s assert ( - out_len.value <= 2 ** 64 - 1 + out_len.value <= 2**64 - 1 ), f"Can only generate up to 2^64 random numbers, but {out_len} were requested." def gen_ir(gen_ptr, out_gen_ptr, out_array_ptr): @@ -264,7 +264,7 @@ def gen_ir(gen_ptr, out_gen_ptr, out_array_ptr): # Max value for counter should be 2**64-2 because we need to reserve a special value to # indicate the counter is used up. - with irb.if_scope(gen[7] < tir.const(2 ** 64 - 1, dtype=gen.dtype) - out_len): + with irb.if_scope(gen[7] < tir.const(2**64 - 1, dtype=gen.dtype) - out_len): for i in range(10): tmp[i] = gen[i] with irb.else_scope(): diff --git a/python/tvm/topi/testing/correlation_nchw_python.py b/python/tvm/topi/testing/correlation_nchw_python.py index ac12e81bc6fbe..bab5f2dc526a2 100644 --- a/python/tvm/topi/testing/correlation_nchw_python.py +++ b/python/tvm/topi/testing/correlation_nchw_python.py @@ -103,5 +103,5 @@ def correlation_nchw_python( pad_data2[nbatch, channel, y2 + h, x2 + w], ) - out /= float(kernel_size ** 2 * data1.shape[1]) + out /= float(kernel_size**2 * data1.shape[1]) return out diff --git a/tests/python/contrib/test_cmsisnn/utils.py b/tests/python/contrib/test_cmsisnn/utils.py index 18e3d4e53ffc4..6bd375db1ff23 100644 --- a/tests/python/contrib/test_cmsisnn/utils.py +++ b/tests/python/contrib/test_cmsisnn/utils.py @@ -290,7 +290,7 @@ def generate_ref_data_tflite(model): def create_conv2d_tflite_model(ifm_shape, kernel_shape, strides, dilation, padding, activation): - """ This method prepares TFlite graph with a single Conv2d layer """ + """This method prepares TFlite graph with a single Conv2d layer""" import tensorflow as tf class Model(tf.Module): diff --git a/tests/python/contrib/test_ethosu/cascader/conftest.py b/tests/python/contrib/test_ethosu/cascader/conftest.py index 1d55067929fa0..74063ba3433eb 100644 --- a/tests/python/contrib/test_ethosu/cascader/conftest.py +++ b/tests/python/contrib/test_ethosu/cascader/conftest.py @@ -29,7 +29,7 @@ def FLASH(): return cs.MemoryRegion( name="FLASH", - size=10 ** 7, + size=10**7, read_bandwidth=4, write_bandwidth=4, read_latency=0, @@ -42,7 +42,7 @@ def FLASH(): def DRAM(): return cs.MemoryRegion( name="DRAM", - size=10 ** 9, + size=10**9, read_bandwidth=8, write_bandwidth=8, read_latency=0, @@ -55,7 +55,7 @@ def DRAM(): def SRAM(): return cs.MemoryRegion( name="SRAM", - size=10 ** 6, + size=10**6, read_bandwidth=16, write_bandwidth=16, read_latency=0, diff --git a/tests/python/frontend/pytorch/test_forward.py b/tests/python/frontend/pytorch/test_forward.py index 285d857ca60d3..c3fca80838c70 100644 --- a/tests/python/frontend/pytorch/test_forward.py +++ b/tests/python/frontend/pytorch/test_forward.py @@ -2193,7 +2193,7 @@ def test_vgg11_bn(): def test_custom_conversion_map(): def get_roi_align(): pool_size = 5 - n_channels = 2 * (pool_size ** 2) + n_channels = 2 * (pool_size**2) x = torch.rand(2, n_channels, 10, 10) rois = torch.tensor( [ diff --git a/tests/python/relay/test_op_grad_level1.py b/tests/python/relay/test_op_grad_level1.py index bab709f2b88d0..a31191a42c48f 100644 --- a/tests/python/relay/test_op_grad_level1.py +++ b/tests/python/relay/test_op_grad_level1.py @@ -56,11 +56,11 @@ class TestUnaryOp: "log10": (tvm.relay.log10, lambda x, g: g * (1 / (np.log(10) * x))), "cosh": (tvm.relay.cosh, lambda x, g: g * (np.sinh(x))), "sinh": (tvm.relay.sinh, lambda x, g: g * (np.cosh(x))), - "asin": (tvm.relay.asin, lambda x, g: g * (1.0 / (1.0 - x ** 2) ** (1.0 / 2.0))), - "acos": (tvm.relay.acos, lambda x, g: g * (-1.0 / (1.0 - x ** 2.0) ** (1.0 / 2.0))), - "acosh": (tvm.relay.acosh, lambda x, g: g * (1.0 / (x ** 2 - 1.0) ** (1.0 / 2.0))), - "asinh": (tvm.relay.asinh, lambda x, g: g * (1.0 / (x ** 2 + 1.0) ** (1.0 / 2.0))), - "atanh": (tvm.relay.atanh, lambda x, g: g * (-1.0 / (x ** 2 - 1.0))), + "asin": (tvm.relay.asin, lambda x, g: g * (1.0 / (1.0 - x**2) ** (1.0 / 2.0))), + "acos": (tvm.relay.acos, lambda x, g: g * (-1.0 / (1.0 - x**2.0) ** (1.0 / 2.0))), + "acosh": (tvm.relay.acosh, lambda x, g: g * (1.0 / (x**2 - 1.0) ** (1.0 / 2.0))), + "asinh": (tvm.relay.asinh, lambda x, g: g * (1.0 / (x**2 + 1.0) ** (1.0 / 2.0))), + "atanh": (tvm.relay.atanh, lambda x, g: g * (-1.0 / (x**2 - 1.0))), } relay_op, ref_func = tvm.testing.parameters(*config.values(), ids=config.keys()) @@ -136,7 +136,7 @@ class TestBinaryOp: "add": (relay.add, lambda x, y: [np.ones_like(x), np.ones_like(y)]), "subtract": (relay.subtract, lambda x, y: [np.ones_like(x), -np.ones_like(y)]), "multiply": (relay.multiply, lambda x, y: [y, x]), - "divide": (relay.divide, lambda x, y: [1 / y, -x / (y ** 2)]), + "divide": (relay.divide, lambda x, y: [1 / y, -x / (y**2)]), } relay_op, ref_func = tvm.testing.parameters(*config.values(), ids=config.keys()) diff --git a/tests/python/topi/python/test_topi_prng.py b/tests/python/topi/python/test_topi_prng.py index 60ef7b3b234ca..d431679444b80 100644 --- a/tests/python/topi/python/test_topi_prng.py +++ b/tests/python/topi/python/test_topi_prng.py @@ -120,14 +120,14 @@ def test_threefry_generate(target, dev): # test enough generates to go over generate limit gen = np.array( - [0, 0, 0, 0, 0, 0, 0, 2 ** 64 - 2, 1 << 63, 0], dtype="uint64" + [0, 0, 0, 0, 0, 0, 0, 2**64 - 2, 1 << 63, 0], dtype="uint64" ) # make counter large a, rands = threefry_generate(target, dev, gen, (2048,)) assert gen[4] != a[4], "Overflow of counter should trigger path change" assert a[7] == 2048, "Overflow of counter should still update counter" # check generate with path at length limit - gen = np.array([0, 0, 0, 0, 0, 0, 0, 2 ** 64 - 2, 0, 0], dtype="uint64") # make counter large + gen = np.array([0, 0, 0, 0, 0, 0, 0, 2**64 - 2, 0, 0], dtype="uint64") # make counter large a, rands = threefry_generate(target, dev, gen, (2048,)) assert ( gen[0:4] != a[0:4] diff --git a/tests/python/topi/python/test_topi_transform.py b/tests/python/topi/python/test_topi_transform.py index 730d22cba16ac..180f267650ccd 100644 --- a/tests/python/topi/python/test_topi_transform.py +++ b/tests/python/topi/python/test_topi_transform.py @@ -861,10 +861,10 @@ def test_reinterpret(): (1000,), "int16", "uint16", lambda shape: np.random.randint(-1000, 1000, size=shape) ) verify_reinterpret( - (1000,), "uint32", "int32", lambda shape: np.random.randint(0, 2 ** 32 - 1, size=shape) + (1000,), "uint32", "int32", lambda shape: np.random.randint(0, 2**32 - 1, size=shape) ) verify_reinterpret( - (1000,), "uint32", "int32", lambda shape: np.random.randint(0, 2 ** 32 - 1, size=shape) + (1000,), "uint32", "int32", lambda shape: np.random.randint(0, 2**32 - 1, size=shape) ) diff --git a/tests/python/unittest/test_arith_canonical_simplify.py b/tests/python/unittest/test_arith_canonical_simplify.py index 6dc91d780413f..74c8bcb5fddf8 100644 --- a/tests/python/unittest/test_arith_canonical_simplify.py +++ b/tests/python/unittest/test_arith_canonical_simplify.py @@ -331,7 +331,7 @@ def test_simplify_cast(): # cast(i32, i + j - 100) i = te.var("i", dtype="int64") j = te.var("j", dtype="int64") - ck.analyzer.update(i, tvm.arith.ConstIntBound(0, 2 ** 31 - 1)) + ck.analyzer.update(i, tvm.arith.ConstIntBound(0, 2**31 - 1)) ck.analyzer.update(j, tvm.arith.ConstIntBound(0, 10)) res = tcast("int32", i + j - 100) ck.verify(res, res) diff --git a/tests/python/unittest/test_auto_scheduler_compute_dag.py b/tests/python/unittest/test_auto_scheduler_compute_dag.py index 81ee5cabbfbc0..d3b618d67586b 100644 --- a/tests/python/unittest/test_auto_scheduler_compute_dag.py +++ b/tests/python/unittest/test_auto_scheduler_compute_dag.py @@ -47,25 +47,25 @@ def test_estimate_flop(): N = 512 A, B, C = matmul_auto_scheduler_test(N, N, N) dag = auto_scheduler.ComputeDAG([A, B, C]) - assert abs(dag.flop_ct - 2 * N ** 3) < 0.5 + assert abs(dag.flop_ct - 2 * N**3) < 0.5 D = topi.nn.relu(C) dag = auto_scheduler.ComputeDAG([A, B, D]) - assert abs(dag.flop_ct - (2 * N ** 3 + N * N)) < 0.5 + assert abs(dag.flop_ct - (2 * N**3 + N * N)) < 0.5 # should not count the comparison operations in padding E = topi.nn.pad(C, [1, 1]) dag = auto_scheduler.ComputeDAG([A, B, E]) - assert abs(dag.flop_ct - 2 * N ** 3) < 0.5 + assert abs(dag.flop_ct - 2 * N**3) < 0.5 F = te.compute((N, N), lambda i, j: E[i, j], name="F", attrs={"FLOP": 1234}) dag = auto_scheduler.ComputeDAG([A, B, F]) - assert abs(dag.flop_ct - (2 * N ** 3 + 1234)) < 0.5 + assert abs(dag.flop_ct - (2 * N**3 + 1234)) < 0.5 A = te.placeholder((N, N), dtype="float32", name="A") F = te.compute((N, N), lambda i, j: te.if_then_else(A[i, j] > 0, A[i, j], 0)) dag = auto_scheduler.ComputeDAG([A, F]) - assert abs(dag.flop_ct - N ** 2) < 0.5 + assert abs(dag.flop_ct - N**2) < 0.5 def test_stage_order(): diff --git a/tests/python/unittest/test_auto_scheduler_feature.py b/tests/python/unittest/test_auto_scheduler_feature.py index e11496e8cad6d..084f23db5132f 100644 --- a/tests/python/unittest/test_auto_scheduler_feature.py +++ b/tests/python/unittest/test_auto_scheduler_feature.py @@ -78,8 +78,8 @@ def test_cpu_matmul(): """ # check touched memory in bytes, touched unique memory in bytes, reuse distance, etc. - assert fequal(fea_dict[c_name + ".bytes"], math.log2(512 ** 3 * 4 + 1)) - assert fequal(fea_dict[b_name + ".unique_bytes"], math.log2(512 ** 2 * 4 + 1)) + assert fequal(fea_dict[c_name + ".bytes"], math.log2(512**3 * 4 + 1)) + assert fequal(fea_dict[b_name + ".unique_bytes"], math.log2(512**2 * 4 + 1)) assert fequal(fea_dict[c_name + ".reuse_dis_iter"], math.log2(8 * 16 + 1)) assert fequal(fea_dict[c_name + ".reuse_dis_bytes"], math.log2((8 * 16 + 8 + 16) * 4 + 1)) assert fequal(fea_dict[c_name + ".reuse_ct"], math.log2(512 + 1)) diff --git a/tests/python/unittest/test_autotvm_space.py b/tests/python/unittest/test_autotvm_space.py index d56ca9e07214a..d9f2b528e4291 100644 --- a/tests/python/unittest/test_autotvm_space.py +++ b/tests/python/unittest/test_autotvm_space.py @@ -76,7 +76,7 @@ def count4(n): # test overflow n = 25 cfg = ConfigSpace() - cfg.define_split("x", cfg.axis(2 ** n), policy="factors", num_outputs=4) + cfg.define_split("x", cfg.axis(2**n), policy="factors", num_outputs=4) # count4(25) is 3276. assert len(cfg.space_map["x"]) == count4(n) diff --git a/tests/python/unittest/test_format_si_prefix.py b/tests/python/unittest/test_format_si_prefix.py index 4df5c2b8cd133..e0276ce022b86 100644 --- a/tests/python/unittest/test_format_si_prefix.py +++ b/tests/python/unittest/test_format_si_prefix.py @@ -30,7 +30,7 @@ def test_format_si_prefix(): for i, prefix in enumerate(SI_PREFIXES): integer, decimal = random.randint(0, 1000), random.randint(0, 1000) exp = -24 + 3 * i # 0th prefix (yocto) is 10^-24 - number = integer * (10 ** exp) + decimal * (10 ** (exp - 3)) + number = integer * (10**exp) + decimal * (10 ** (exp - 3)) expected = integer + decimal / 1000 assert isclose(utils.format_si_prefix(number, prefix), expected) diff --git a/tests/python/unittest/test_target_codegen_c_host.py b/tests/python/unittest/test_target_codegen_c_host.py index 95cd967dd207b..fc7d62b393e4f 100644 --- a/tests/python/unittest/test_target_codegen_c_host.py +++ b/tests/python/unittest/test_target_codegen_c_host.py @@ -111,7 +111,7 @@ def check_c(): fadd = m["test_reinterpret"] dev = tvm.cpu(0) n = nn - a = tvm.nd.array(np.random.randint(-(2 ** 30), 2 ** 30, size=n).astype(A.dtype), dev) + a = tvm.nd.array(np.random.randint(-(2**30), 2**30, size=n).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(n, dtype=B.dtype), dev) fadd(a, b) tvm.testing.assert_allclose(b.numpy(), (2 + a.numpy()).view("float32")) diff --git a/tests/python/unittest/test_target_codegen_rocm.py b/tests/python/unittest/test_target_codegen_rocm.py index 894c8ecd0ac9e..3e286f6ebff20 100644 --- a/tests/python/unittest/test_target_codegen_rocm.py +++ b/tests/python/unittest/test_target_codegen_rocm.py @@ -105,7 +105,7 @@ def check_rocm(dtype, n): dtype = np.random.choice(["float32", "float16", "int8", "int32"]) logN = np.random.randint(1, 15) peturb = np.random.uniform(low=0.5, high=1.5) - check_rocm(dtype, int(peturb * (2 ** logN))) + check_rocm(dtype, int(peturb * (2**logN))) @tvm.testing.requires_rocm diff --git a/tests/python/unittest/test_tir_transform_narrow_datatype.py b/tests/python/unittest/test_tir_transform_narrow_datatype.py index 51c382309856e..9909262a44fc2 100644 --- a/tests/python/unittest/test_tir_transform_narrow_datatype.py +++ b/tests/python/unittest/test_tir_transform_narrow_datatype.py @@ -67,13 +67,13 @@ def check(m, n, target_bits, target_dtype): # i32 -> i32 check(2, 2, 32, "int32") # i32 + i32 is not promoted to i64 even if overflow - check(2 ** 16, 2 ** 16, 32, "int32") + check(2**16, 2**16, 32, "int32") # i64 -> i32 check(const(2, dtype="int64"), const(2, dtype="int64"), 32, "int32") - check(const(2 ** 16, dtype="int64"), const(2 ** 16, dtype="int64"), 32, "int64") + check(const(2**16, dtype="int64"), const(2**16, dtype="int64"), 32, "int64") # i32 -> i16 check(2, 2, 16, "int16") - check(2 ** 10, 2 ** 10, 16, "int32") + check(2**10, 2**10, 16, "int32") # symbolic shape check(te.size_var(name="m", dtype="int32"), te.size_var(name="n", dtype="int32"), 32, "int32") @@ -100,7 +100,7 @@ def check(m, n, target_bits, target_dtype): # i32 -> i32 check(2, 32, target_bits=32, target_dtype="int32") check( - 2 ** 30, + 2**30, 32, # i32 + i32 is not promoted to i64 even in the case of overflow target_bits=32, target_dtype="int32", @@ -108,14 +108,14 @@ def check(m, n, target_bits, target_dtype): # i64 -> i32 check(const(2, dtype="int64"), const(32, dtype="int64"), target_bits=32, target_dtype="int32") check( - const(2 ** 30, dtype="int64"), + const(2**30, dtype="int64"), const(32, dtype="int64"), target_bits=32, target_dtype="int64", ) # i32 -> i16 check(2, 32, target_bits=16, target_dtype="int16") - check(2 ** 14, 32, target_bits=16, target_dtype="int32") + check(2**14, 32, target_bits=16, target_dtype="int32") def test_multilanes(): @@ -133,14 +133,14 @@ def check(m, lanes, target_bits, target_dtype): assert stmt.seq[0].loop_var.dtype == target_dtype # i32 -> i32 - check(const(2 ** 10, dtype="int32"), 2, target_bits=32, target_dtype="int32") - check(const(2 ** 32, dtype="int32"), 2, target_bits=32, target_dtype="int32") + check(const(2**10, dtype="int32"), 2, target_bits=32, target_dtype="int32") + check(const(2**32, dtype="int32"), 2, target_bits=32, target_dtype="int32") # i64 -> i32 - check(const(2 ** 10, dtype="int64"), 2, target_bits=32, target_dtype="int32") - check(const(2 ** 32, dtype="int64"), 2, target_bits=32, target_dtype="int64") + check(const(2**10, dtype="int64"), 2, target_bits=32, target_dtype="int32") + check(const(2**32, dtype="int64"), 2, target_bits=32, target_dtype="int64") # i32 -> i16 - check(const(2 ** 10, dtype="int32"), 2, target_bits=16, target_dtype="int16") - check(const(2 ** 16, dtype="int32"), 2, target_bits=16, target_dtype="int32") + check(const(2**10, dtype="int32"), 2, target_bits=16, target_dtype="int16") + check(const(2**16, dtype="int32"), 2, target_bits=16, target_dtype="int32") def test_reduce(): @@ -158,7 +158,7 @@ def check(m, target_bits, target_dtype): check(const(64, dtype="int64"), 32, "int32") # i32 -> i16 check(const(64, dtype="int32"), 16, "int16") - check(const(2 ** 16, dtype="int32"), 16, "int32") + check(const(2**16, dtype="int32"), 16, "int32") # symbolic check(te.var("n", dtype="int32"), 32, "int32") check(te.var("n", dtype="int64"), 32, "int64") @@ -181,10 +181,10 @@ def check(m, n, target_bits, target_dtype): assert stmt.body.loop_var.dtype == target_dtype # The maximum index is (2**15 * 2**15 - 1) * 2 <= 2**31 - 1 - check(const(2 ** 15, "int64"), const(2 ** 15, "int64"), target_bits=32, target_dtype="int32") + check(const(2**15, "int64"), const(2**15, "int64"), target_bits=32, target_dtype="int32") # The maximum index is (2**15 * 2**15 - 1 + 2**15) * 2 > 2**31 - 1 check( - const(2 ** 15, "int64"), const((2 ** 15 + 1), "int64"), target_bits=32, target_dtype="int64" + const(2**15, "int64"), const((2**15 + 1), "int64"), target_bits=32, target_dtype="int64" ) @@ -208,23 +208,23 @@ def check(shapex, shapey, target_bits, target_dtype): assert stmt.body.loop_var.dtype == target_dtype check( - (const(2 ** 16, "int64"), const(2 ** 15 + 1, "int64")), - (1, const(2 ** 15 + 1, "int64")), + (const(2**16, "int64"), const(2**15 + 1, "int64")), + (1, const(2**15 + 1, "int64")), target_bits=32, target_dtype="int64", ) check( - (const(2 ** 16, "int64"), const(2 ** 15, "int64")), - (1, const(2 ** 15, "int64")), + (const(2**16, "int64"), const(2**15, "int64")), + (1, const(2**15, "int64")), target_bits=32, target_dtype="int32", ) check( - (const(2 ** 31, "int64"),), (const(2 ** 31, "int64"),), target_bits=32, target_dtype="int32" + (const(2**31, "int64"),), (const(2**31, "int64"),), target_bits=32, target_dtype="int32" ) check( - (const(2 ** 31 + 1, "int64"),), - (const(2 ** 31 + 1, "int64"),), + (const(2**31 + 1, "int64"),), + (const(2**31 + 1, "int64"),), target_bits=32, target_dtype="int64", ) @@ -245,14 +245,14 @@ def check(shape, index, target_bits, target_dtype): assert stmt.value.indices[0].dtype == target_dtype check( - (const(2 ** 16, "int64"), const(2 ** 15 + 1, "int64")), + (const(2**16, "int64"), const(2**15 + 1, "int64")), relay.const(0, dtype="int64"), target_bits=32, target_dtype="int32", ) check( - (const(2 ** 16, "int64"), const(2 ** 15 + 1, "int64")), - relay.const(2 ** 31, dtype="int64"), + (const(2**16, "int64"), const(2**15 + 1, "int64")), + relay.const(2**31, dtype="int64"), target_bits=32, target_dtype="int64", ) @@ -271,7 +271,7 @@ def test_ramp_dtype_consistency(): """ n = tvm.tir.IntImm("int64", 4) m = tvm.tir.IntImm("int64", 2) - A = te.compute((n, m), lambda i, j: tvm.tir.Cast("int64", 2 ** 31 - 1) * i, name="A") + A = te.compute((n, m), lambda i, j: tvm.tir.Cast("int64", 2**31 - 1) * i, name="A") s = te.create_schedule(A.op) s[A].vectorize(A.op.axis[1]) lower_sch(s, [A], 32, extra_passes=[tvm.tir.transform.VectorizeLoop()]) diff --git a/tests/python/unittest/test_tir_transform_vectorize.py b/tests/python/unittest/test_tir_transform_vectorize.py index 5b6f7de97bc6e..2448fffe8929c 100644 --- a/tests/python/unittest/test_tir_transform_vectorize.py +++ b/tests/python/unittest/test_tir_transform_vectorize.py @@ -220,7 +220,7 @@ def test_ir(A, B, C): def test_vectorize_dtype_mismatch(): n = tvm.tir.IntImm("int64", 4) - A = te.compute((n,), lambda i: tvm.tir.IntImm("int64", 2 ** 31 - 1) + i, name="A") + A = te.compute((n,), lambda i: tvm.tir.IntImm("int64", 2**31 - 1) + i, name="A") s = te.create_schedule(A.op) s[A].vectorize(A.op.axis[0]) tvm.lower(s, [A], "llvm", simple_mode=True) diff --git a/tests/python/unittest/test_tir_usmp_algo_hill_climb.py b/tests/python/unittest/test_tir_usmp_algo_hill_climb.py index a5f1158a90c14..863b0a566ce34 100644 --- a/tests/python/unittest/test_tir_usmp_algo_hill_climb.py +++ b/tests/python/unittest/test_tir_usmp_algo_hill_climb.py @@ -45,13 +45,10 @@ def _verify_conflicts(buffer_info, pool_allocation, buffer_info_map): if conflict_pool_allocation.pool_info == pool_allocation.pool_info: assert conflict_pool_allocation.byte_offset != pool_allocation.byte_offset - l2 = ( - max( - conflict_pool_allocation.byte_offset + conflict.size_bytes, - pool_allocation.byte_offset + buffer_info.size_bytes, - ) - - min(conflict_pool_allocation.byte_offset, pool_allocation.byte_offset) - ) + l2 = max( + conflict_pool_allocation.byte_offset + conflict.size_bytes, + pool_allocation.byte_offset + buffer_info.size_bytes, + ) - min(conflict_pool_allocation.byte_offset, pool_allocation.byte_offset) assert ( conflict.size_bytes + buffer_info.size_bytes <= l2 ), 'Conflicting: \n"{} @{}"\n"{} @{}"'.format( diff --git a/vta/tests/python/integration/test_benchmark_gemm.py b/vta/tests/python/integration/test_benchmark_gemm.py index 3bc3520d8636d..6290ca436f92b 100644 --- a/vta/tests/python/integration/test_benchmark_gemm.py +++ b/vta/tests/python/integration/test_benchmark_gemm.py @@ -174,7 +174,7 @@ def run_test(header, print_ir): env.dma_copy, print_ir, ) - gops = (num_ops / cost.mean) / float(10 ** 9) + gops = (num_ops / cost.mean) / float(10**9) print(header) print("\tTime cost = %g sec/op, %g GOPS" % (cost.mean, gops)) @@ -189,7 +189,7 @@ def run_test(header, print_ir): cost = run_schedule( mock.dma_copy, mock.dma_copy, env.gemm, mock.alu, mock.dma_copy, print_ir ) - gops = (num_ops / cost.mean) / float(10 ** 9) + gops = (num_ops / cost.mean) / float(10**9) print(header) print("\tTime cost = %g sec/op, %g GOPS" % (cost.mean, gops)) @@ -204,7 +204,7 @@ def run_test(header, print_ir): cost = run_schedule( mock.dma_copy, mock.dma_copy, mock.gemm, env.alu, mock.dma_copy, print_ir ) - gops = (num_ops / cost.mean) / float(10 ** 9) + gops = (num_ops / cost.mean) / float(10**9) print(header) print("\tTime cost = %g sec/op, %g GOPS" % (cost.mean, gops)) @@ -220,8 +220,8 @@ def run_test(header, print_ir): cost = run_schedule( env.dma_copy, mock.dma_copy, mock.gemm, mock.alu, mock.dma_copy, print_ir ) - gops = (num_ops / cost.mean) / float(10 ** 9) - bandwith = (batch_size * channel * env.INP_WIDTH / cost.mean) / float(10 ** 9) + gops = (num_ops / cost.mean) / float(10**9) + bandwith = (batch_size * channel * env.INP_WIDTH / cost.mean) / float(10**9) print(header) print( "\tTime cost = %g sec/op, %g GOPS, bandwidth=%g Gbits" @@ -240,8 +240,8 @@ def run_test(header, print_ir): cost = run_schedule( mock.dma_copy, env.dma_copy, mock.gemm, mock.alu, mock.dma_copy, print_ir ) - gops = (num_ops / cost.mean) / float(10 ** 9) - bandwith = (channel * channel * env.WGT_WIDTH / cost.mean) / float(10 ** 9) + gops = (num_ops / cost.mean) / float(10**9) + bandwith = (channel * channel * env.WGT_WIDTH / cost.mean) / float(10**9) print(header) print( "\tTime cost = %g sec/op, %g GOPS, bandwidth=%g Gbits" @@ -260,8 +260,8 @@ def run_test(header, print_ir): cost = run_schedule( mock.dma_copy, mock.dma_copy, mock.gemm, mock.alu, env.dma_copy, print_ir ) - gops = (num_ops / cost.mean) / float(10 ** 9) - bandwith = (batch_size * channel * env.OUT_WIDTH / cost.mean) / float(10 ** 9) + gops = (num_ops / cost.mean) / float(10**9) + bandwith = (batch_size * channel * env.OUT_WIDTH / cost.mean) / float(10**9) print(header) print( "\tTime cost = %g sec/op, %g GOPS, bandwidth=%g Gbits" diff --git a/vta/tests/python/integration/test_benchmark_topi_conv2d.py b/vta/tests/python/integration/test_benchmark_topi_conv2d.py index 672c1134888db..64f9ec2debae6 100644 --- a/vta/tests/python/integration/test_benchmark_topi_conv2d.py +++ b/vta/tests/python/integration/test_benchmark_topi_conv2d.py @@ -283,7 +283,7 @@ def get_ref_data(): res_ref = res_ref.astype(env.out_dtype) correct = np.allclose(res_orig, res_ref) - gops = (num_ops / cost.mean) / float(10 ** 9) + gops = (num_ops / cost.mean) / float(10**9) status = "PASSED" if correct else "FAILED" if "arm_cpu" in target.keys: device = "CPU" diff --git a/vta/tests/python/integration/test_benchmark_topi_conv2d_transpose.py b/vta/tests/python/integration/test_benchmark_topi_conv2d_transpose.py index 65c861ba463e2..b0ea2fc113df1 100644 --- a/vta/tests/python/integration/test_benchmark_topi_conv2d_transpose.py +++ b/vta/tests/python/integration/test_benchmark_topi_conv2d_transpose.py @@ -270,7 +270,7 @@ def get_ref_data(): res_ref = res_ref.astype(env.out_dtype) correct = np.allclose(res_orig, res_ref) - gops = (num_ops / cost.mean) / float(10 ** 9) + gops = (num_ops / cost.mean) / float(10**9) status = "PASSED" if correct else "FAILED" if "arm_cpu" in target.keys: device = "CPU" diff --git a/vta/tests/python/integration/test_benchmark_topi_dense.py b/vta/tests/python/integration/test_benchmark_topi_dense.py index 133cbf506e911..45a400b24e8dd 100644 --- a/vta/tests/python/integration/test_benchmark_topi_dense.py +++ b/vta/tests/python/integration/test_benchmark_topi_dense.py @@ -184,7 +184,7 @@ def get_ref_data(): res_ref = res_ref.astype(env.out_dtype) correct = np.allclose(res_orig, res_ref) - gops = (num_ops / cost.mean) / float(10 ** 9) + gops = (num_ops / cost.mean) / float(10**9) status = "PASSED" if correct else "FAILED" if "arm_cpu" in target.keys: device = "CPU" diff --git a/vta/tests/python/integration/test_benchmark_topi_group_conv2d.py b/vta/tests/python/integration/test_benchmark_topi_group_conv2d.py index 66de6d9a5460c..bc9efa05f3291 100644 --- a/vta/tests/python/integration/test_benchmark_topi_group_conv2d.py +++ b/vta/tests/python/integration/test_benchmark_topi_group_conv2d.py @@ -277,7 +277,7 @@ def get_ref_data(): res_ref = res_ref.astype(env.out_dtype) correct = np.allclose(res_orig, res_ref) - gops = (num_ops / cost.mean) / float(10 ** 9) + gops = (num_ops / cost.mean) / float(10**9) status = "PASSED" if correct else "FAILED" if "arm_cpu" in target.keys: device = "CPU"