forked from HanselYu/IPPF-FE
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPantibacterial.py
117 lines (109 loc) · 4.78 KB
/
Pantibacterial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import torch
from transformers import T5EncoderModel, T5Tokenizer
import re
import gc
import lightgbm
from Extract_feature import *
import pickle
import sys
def Load_data():
print('Data Loading...')
Sequence = []
with open('Anti-bacterial_peptides/AMP_Main.fasta', 'r') as myfile:
for line in myfile:
if line[0] != '>':
Sequence.append(line.strip('\n'))
with open('Anti-bacterial_peptides/Non_AMP_Main.fasta', 'r') as myfile:
for line in myfile:
if line[0] != '>':
Sequence.append(line.strip('\n'))
with open('Anti-bacterial_peptides/AMP_Ind.fasta', 'r') as myfile:
for line in myfile:
if line[0] != '>':
Sequence.append(line.strip('\n'))
with open('Anti-bacterial_peptides/Non_AMP_Ind.fasta', 'r') as myfile:
for line in myfile:
if line[0] != '>':
Sequence.append(line.strip('\n'))
Mysequence = []
for i in range(len(Sequence)):
zj = ''
for j in range(len(Sequence[i])-1):
zj += Sequence[i][j] + ' '
zj += Sequence[i][-1]
Mysequence.append(zj)
return Sequence, Mysequence
def ALL_features(Sequence, sequences_Example):
# Crafted features
features_crafted = Get_features(Sequence, 4)
# Automatic extracted features
tokenizer = T5Tokenizer.from_pretrained("prot_t5_xl_uniref50", do_lower_case=False)
model = T5EncoderModel.from_pretrained("prot_t5_xl_uniref50")
gc.collect()
print(torch.cuda.is_available())
# 'cuda:0' if torch.cuda.is_available() else
device = torch.device('cuda:3' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
model = model.eval()
features = []
for i in range(len(sequences_Example)):
print('For sequence ', str(i+1))
sequences_Example_i = sequences_Example[i]
sequences_Example_i = [re.sub(r"[UZOB]", "X", sequences_Example_i)]
ids = tokenizer.batch_encode_plus(sequences_Example_i, add_special_tokens=True, padding=True)
input_ids = torch.tensor(ids['input_ids']).to(device)
attention_mask = torch.tensor(ids['attention_mask']).to(device)
with torch.no_grad():
embedding = model(input_ids=input_ids, attention_mask=attention_mask)
embedding = embedding.last_hidden_state.cpu().numpy()
for seq_num in range(len(embedding)):
seq_len = (attention_mask[seq_num] == 1).sum()
seq_emd = embedding[seq_num][:seq_len - 1]
features.append(seq_emd)
features_normalize = np.zeros([len(features), len(features[0][0])], dtype=float)
for i in range(len(features)):
for k in range(len(features[0][0])):
for j in range(len(features[i])):
features_normalize[i][k] += features[i][j][k]
features_normalize[i][k] /= len(features[i])
print(len(features_normalize), len(features_normalize[0]))
return features_crafted, features_normalize
def Peptide_abp(features_crafted, features_normalize):
features_ensemble = np.concatenate((features_normalize, features_crafted), axis=1)
Label = np.concatenate((np.ones([1635], dtype=int), np.zeros([1485], dtype=int),
np.ones([4017], dtype=int), np.zeros([5799], dtype=int)), axis=0)
model = lightgbm.LGBMClassifier()
model.fit(features_ensemble, Label)
with open('Peptide_abp.pkl', 'wb') as f:
pickle.dump(model, f)
if __name__ == '__main__':
Tag = sys.argv[1]
Dir = sys.argv[2]
if Tag == 'Train':
Sequence, Mysequence = Load_data()
features_crafted, features_normalize = ALL_features(Sequence, Mysequence)
Peptide_abp(features_crafted, features_normalize)
elif Tag == 'Predict':
Sequence = []
with open(Dir, 'r') as myfile:
for line in myfile:
if line[0] != '>':
Sequence.append(line.strip('\n'))
Mysequence = []
for i in range(len(Sequence)):
zj = ''
for j in range(len(Sequence[i])-1):
zj += Sequence[i][j] + ' '
zj += Sequence[i][-1]
Mysequence.append(zj)
features_crafted, features_normalize = ALL_features(Sequence, Mysequence)
features_ensemble = np.concatenate((features_normalize, features_crafted), axis=1)
with open('Peptide_abp.pkl', 'rb') as myfile:
model = pickle.load(myfile)
Pre_label = model.predict(features_ensemble)
print(Pre_label)
Pre_label = np.array(Pre_label).T
res = pd.DataFrame({'Pre_label': Pre_label})
res.to_excel('Pre_label.xlsx')
else:
print('Please input Train/Test/Predict !')