forked from HanselYu/UniKP
-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathutils.py
194 lines (182 loc) · 5.77 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch
import math
import torch.nn as nn
from rdkit import Chem
from rdkit import rdBase
rdBase.DisableLog('rdApp.*')
# Split SMILES into words
def split(sm):
'''
function: Split SMILES into words. Care for Cl, Br, Si, Se, Na etc.
input: A SMILES
output: A string with space between words
'''
arr = []
i = 0
while i < len(sm)-1:
if not sm[i] in ['%', 'C', 'B', 'S', 'N', 'R', 'X', 'L', 'A', 'M', \
'T', 'Z', 's', 't', 'H', '+', '-', 'K', 'F']:
arr.append(sm[i])
i += 1
elif sm[i]=='%':
arr.append(sm[i:i+3])
i += 3
elif sm[i]=='C' and sm[i+1]=='l':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='C' and sm[i+1]=='a':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='C' and sm[i+1]=='u':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='B' and sm[i+1]=='r':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='B' and sm[i+1]=='e':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='B' and sm[i+1]=='a':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='B' and sm[i+1]=='i':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='S' and sm[i+1]=='i':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='S' and sm[i+1]=='e':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='S' and sm[i+1]=='r':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='N' and sm[i+1]=='a':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='N' and sm[i+1]=='i':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='R' and sm[i+1]=='b':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='R' and sm[i+1]=='a':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='X' and sm[i+1]=='e':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='L' and sm[i+1]=='i':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='A' and sm[i+1]=='l':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='A' and sm[i+1]=='s':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='A' and sm[i+1]=='g':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='A' and sm[i+1]=='u':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='M' and sm[i+1]=='g':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='M' and sm[i+1]=='n':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='T' and sm[i+1]=='e':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='Z' and sm[i+1]=='n':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='s' and sm[i+1]=='i':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='s' and sm[i+1]=='e':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='t' and sm[i+1]=='e':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='H' and sm[i+1]=='e':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='+' and sm[i+1]=='2':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='+' and sm[i+1]=='3':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='+' and sm[i+1]=='4':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='-' and sm[i+1]=='2':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='-' and sm[i+1]=='3':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='-' and sm[i+1]=='4':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='K' and sm[i+1]=='r':
arr.append(sm[i:i+2])
i += 2
elif sm[i]=='F' and sm[i+1]=='e':
arr.append(sm[i:i+2])
i += 2
else:
arr.append(sm[i])
i += 1
if i == len(sm)-1:
arr.append(sm[i])
return ' '.join(arr)
# 活性化関数
class GELU(nn.Module):
def forward(self, x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
# 位置情報を考慮したFFN
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
self.activation = GELU()
def forward(self, x):
return self.w_2(self.dropout(self.activation(self.w_1(x))))
# 正規化層
class LayerNorm(nn.Module):
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class SublayerConnection(nn.Module):
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
return x + self.dropout(sublayer(self.norm(x)))
# Sample SMILES from probablistic distribution
def sample(msms):
ret = []
for msm in msms:
ret.append(torch.multinomial(msm.exp(), 1).squeeze())
return torch.stack(ret)
def validity(smiles):
loss = 0
for sm in smiles:
mol = Chem.MolFromSmiles(sm)
if mol is None:
loss += 1
return 1-loss/len(smiles)