-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_preprocess_SPLIT.py
374 lines (331 loc) · 18.8 KB
/
data_preprocess_SPLIT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# 1.1读取csv数据集,并展示其head
import re
import pandas as pd
import numpy as np
from ast import Index
from cmath import nan
from operator import index
# get corresponding antigen sequence
SARS = ["Alpha", "Beta", "Delta", "Gamma", "Kappa", "Omicron", "SARS-CoV1", "SARS-CoV2_WT"]
def get_antigen(_name):
if _name not in SARS:
fp = open('./data/SARS-CoV2_WT.fasta')
else:
fp = open('./data/%s.fasta' % _name)
antigen_seq = ''
for lne in fp:
if not lne.startswith('>'):
antigen_seq += lne.strip('\n')
fp.close()
return antigen_seq
# 定义读取性能指标的函数,剥离[单位、作者、时间]等建模无用信息
def label_split(exp_index):
a = re.findall("\d+\.?\d*", str(exp_index)) # 正则表达式
if a:
return a[0]
else:
return float('nan')
# 用于剥离一列数据指标的函数
def label_list_split(_label_list):
_index = []
if isinstance(_label_list, list):
for i in _label_list:
if pd.isna(i):
_index.append(i)
else:
i1 = label_split(i)
_index.append(float(i1))
else:
if pd.isna(_label_list):
_index.append(_label_list)
else:
i1 = label_split(_label_list)
_index.append(float(i1))
return _index
# 列表拼接和最小数提取
# 定义函数查找带空值的数组中的最小值
def min_search(Mat):
min_list = []
for elem in Mat:
min_index = np.nanmin(elem)
min_list.append(min_index)
return min_list
EPITOPE = ['non-RBD', 'NTD']
# 剥离SPR,BLI,ELISA,FACS实验中各个列的数值并合并(取最小值)
def make_data_list(_exp_list, _dataset):
index_list_all = []
for _exp_name in _exp_list:
label_df = _dataset[[_exp_name]]
label_list = np.array(label_df).squeeze().tolist()
index_list = label_list_split(label_list)
index_list_all.append(index_list)
zip_start = index_list_all[0]
data_list = []
for list_elem in index_list_all[1:]:
exp_ZIP = zip(zip_start, list_elem)
exp_Mat = list(exp_ZIP)
data_list = min_search(exp_Mat)
zip_start = data_list
return data_list
# 根据输入的亲和力train.csv文件,提取抗体的序列信息和各个实验数值
def generate_affinity_rawdata(_filename, Flag=False, mu=False):
dataset = pd.read_csv("./data/%s" % _filename, encoding='gbk')
# 读取抗体对应的名称,亦即“Name”
antibody_name = dataset[['Name']]
antibody_list = np.array(antibody_name).squeeze().tolist()
# 读取抗体对应的序列,分别提取VHH、VL、CDRH3以及CDRL3
dataset = dataset.replace('ND', '')
antibody_seq1 = dataset['VH or VHH'].astype(str).tolist()
antibody_seq2 = dataset['VL'].astype(str).tolist()
antibody_seq3 = dataset['CDRH3'].astype(str).tolist()
antibody_seq4 = dataset['CDRL3'].astype(str).tolist()
antigen = dataset['Binds to'].astype(str).tolist()
epitope = dataset['Protein+Epitope'].astype(str).tolist()
atg_set = SARS
# make a dic: antigen_name : sequence
atg_dic = {}
for item in atg_set:
seq = get_antigen(item)
atg_dic[item] = seq
# if Flag:
seq_WT = get_antigen("SARS-CoV2_WT")
# 将抗体序列合并,作为训练的输入
length = len(antibody_seq1)
# 然后将它们合并起来,作为单一维度的输入
merge_seq = []
for i in range(length):
if mu: # 多抗原
cur_gen_list = antigen[i].replace('[', '').replace(']', '').replace('\'', '').split(',')
cur_merge = ''
for gen_seq in cur_gen_list: # 每个抗原
if gen_seq not in SARS: # 变体
antigen_seq = seq_WT
antigen_var = gen_seq
idx = antigen_var[1:-1]
try:
idx = int(idx) - 1
if antigen_seq[idx] == antigen_var[0]:
antigen_seq = antigen_seq[:idx] + antigen_var[-1] + antigen_seq[idx + 1:]
except ValueError:
pass
if epitope[i].split(';')[-1].replace(' ', '') in EPITOPE:
cur_merge = cur_merge + (antigen_seq[14:303] + str(antibody_seq1[i]) + str(antibody_seq2[i])
+ str(antibody_seq3[i]) + str(antibody_seq4[i]) + ';')
else:
cur_merge = cur_merge + (antigen_seq[329:583] + str(antibody_seq1[i]) + str(antibody_seq2[i])
+ str(antibody_seq3[i]) + str(antibody_seq4[i]) + ';')
else:
if epitope[i].split(';')[-1].replace(' ', '') in EPITOPE:
cur_merge = cur_merge + (atg_dic[gen_seq][14:303] + str(antibody_seq1[i]) + str(antibody_seq2[i])
+ str(antibody_seq3[i]) + str(antibody_seq4[i]) + ';')
else:
cur_merge = cur_merge + (atg_dic[gen_seq][329:583] + str(antibody_seq1[i]) + str(antibody_seq2[i])
+ str(antibody_seq3[i]) + str(antibody_seq4[i]) + ';')
merge_seq.append(cur_merge)
else:
if Flag: # 变体
antigen_seq = seq_WT
antigen_var = antigen[i]
idx = antigen_var[1:-1]
try:
idx = int(idx) - 1
if antigen_seq[idx] == antigen_var[0]:
antigen_seq = antigen_seq[:idx] + antigen_var[-1] + antigen_seq[idx + 1:]
except ValueError:
pass
if epitope[i].split(';')[-1].replace(' ', '') in EPITOPE:
merge_seq.append(antigen_seq[14:303] + str(antibody_seq1[i]) + str(antibody_seq2[i])
+ str(antibody_seq3[i]) + str(antibody_seq4[i]))
else:
merge_seq.append(antigen_seq[329:583] + str(antibody_seq1[i]) + str(antibody_seq2[i])
+ str(antibody_seq3[i]) + str(antibody_seq4[i]))
else:
if epitope[i].split(';')[-1].replace(' ', '') in EPITOPE:
merge_seq.append(atg_dic[antigen[i]][14:303] + str(antibody_seq1[i]) + str(antibody_seq2[i])
+ str(antibody_seq3[i]) + str(antibody_seq4[i]))
else:
merge_seq.append(atg_dic[antigen[i]][329:583] + str(antibody_seq1[i]) + str(antibody_seq2[i])
+ str(antibody_seq3[i]) + str(antibody_seq4[i]))
SPR_exp_list = ['SPR RBD (KD; nm)', 'SPR S1 (KD; nm)', 'SPR S2 (KD; nm)', 'SPR S-ECD (KD; nm)',
'SPR S (KD; nm)', 'SPR NTD (KD; nm)', 'SPR N (KD; nm)']
BLI_exp_list = ['BLI RBD (KD; nm)', 'BLI S1 (KD; nm)', 'BLI S (KD; nm)', 'BLI NTD (KD; nm)',
'BLI N (KD; nm)']
ELISA_exp_list = ['ELISA RBD competitive (IC50; μg/ml)', 'ELISA S1 competitive (IC50; μg/ml)',
'ELISA S competitive (IC50; μg/ml)', 'ELISA S competitive (IC80; μg/ml)',
'ELISA NTD competitive (IC50; μg/ml)', 'ELISA RBD binding (EC50; μg/ml)',
'ELISA S1 binding (EC50; μg/ml)', 'ELISA S binding (EC50; μg/ml)',
'ELISA N binding (EC50; μg/ml)']
FACS_exp_list = ['FACS RBD (IC50; nm/ml)', 'FACS S (IC50; nm/ml)']
SPR_list = make_data_list(SPR_exp_list, dataset)
FACS_list = make_data_list(FACS_exp_list, dataset)
BLI_list = make_data_list(BLI_exp_list, dataset)
ELISA_list = make_data_list(ELISA_exp_list, dataset)
LIVE_exp_list = ['Live Virus Neutralisation IC50 (50% titre; μg/ml)阈值2μg/ml',
'Live Virus Neutralisation IC80 (80% titre; μg/ml)',
'Live Virus Neutralisation IC90 (90% titre; μg/ml)',
'Live Virus Neutralisation IC100 (100% titre; μg/ml)']
PSE_exp_list = ['Pseudo Virus Neutralisation IC50 (50% titre; μg/ml)',
'Pseudo Virus Neutralisation IC80 (80% titre; μg/ml)',
'Pseudo Virus Neutralisation IC90 (90% titre; μg/ml)',
'Pseudo Virus Neutralisation IC100 (100% titre; μg/ml)',
'Pseudo Virus Neutralisation (fold change)']
LIVE_IC_list = make_data_list(LIVE_exp_list, dataset)
PSE_IC_list = make_data_list(PSE_exp_list, dataset)
# 把之前提取的输入和输出保存成CSV
dataframe = pd.DataFrame({'Name': antibody_list, 'Sequence': merge_seq, 'SPR': SPR_list,
'BLI': BLI_list, 'ELISA': ELISA_list, 'FCAS': FACS_list, 'LIVE_IC50': LIVE_IC_list,
'PSE_IC50': PSE_IC_list})
_name = _filename.split('.')[0]
dataframe.to_csv(r"./data/%s_rawEpitope.csv" % _name, sep=',', index=False)
def generate_neutralization_rawdata(_filename, Flag=False, mu=False):
dataset = pd.read_csv("./data/%s" % _filename, encoding='gbk')
# 读取抗体对应的名称,亦即“Name”
antibody_name = dataset[['Name']]
antibody_list = np.array(antibody_name).squeeze().tolist()
# 读取抗体对应的序列,分别提取VHH、VL、CDRH3以及CDRL3
dataset = dataset.replace('ND', '')
antibody_seq1 = dataset['VH or VHH'].astype(str).tolist()
antibody_seq2 = dataset['VL'].astype(str).tolist()
antibody_seq3 = dataset['CDRH3'].astype(str).tolist()
antibody_seq4 = dataset['CDRL3'].astype(str).tolist()
antigen = dataset['Neutralising Vs'].astype(str).tolist()
epitope = dataset['Protein+Epitope'].astype(str).tolist()
atg_set = SARS
# make a dic: antigen_name : sequence
atg_dic = {}
for item in atg_set:
seq = get_antigen(item)
atg_dic[item] = seq
seq_WT = get_antigen("SARS-CoV2_WT")
# 将抗体序列合并,作为训练的输入
length = len(antibody_seq1)
# 然后将它们合并起来,作为单一维度的输入
merge_seq = []
for i in range(length):
if mu: # 多抗原
cur_gen_list = antigen[i].replace('[', '').replace(']', '').replace('\'', '').split(',')
cur_merge = ''
for gen_seq in cur_gen_list: # 每个抗原
if gen_seq not in SARS: # 变体
antigen_seq = seq_WT
antigen_var = gen_seq
idx = antigen_var[1:-1]
try:
idx = int(idx) - 1
if antigen_seq[idx] == antigen_var[0]:
antigen_seq = antigen_seq[:idx] + antigen_var[-1] + antigen_seq[idx + 1:]
except ValueError:
pass
if epitope[i].split(';')[-1].replace(' ', '') in EPITOPE:
cur_merge = cur_merge + (antigen_seq[14:303] + str(antibody_seq1[i]) + str(antibody_seq2[i])
+ str(antibody_seq3[i]) + str(antibody_seq4[i]) + ';')
else:
cur_merge = cur_merge + (antigen_seq[329:583] + str(antibody_seq1[i]) + str(antibody_seq2[i])
+ str(antibody_seq3[i]) + str(antibody_seq4[i]) + ';')
else:
if epitope[i].split(';')[-1].replace(' ', '') in EPITOPE:
cur_merge = cur_merge + (
atg_dic[gen_seq][14:303] + str(antibody_seq1[i]) + str(antibody_seq2[i])
+ str(antibody_seq3[i]) + str(antibody_seq4[i]) + ';')
else:
cur_merge = cur_merge + (
atg_dic[gen_seq][329:583] + str(antibody_seq1[i]) + str(antibody_seq2[i])
+ str(antibody_seq3[i]) + str(antibody_seq4[i]) + ';')
merge_seq.append(cur_merge)
else:
if Flag: # 变体
antigen_seq = seq_WT
antigen_var = antigen[i]
idx = antigen_var[1:-1]
try:
idx = int(idx) - 1
if antigen_seq[idx] == antigen_var[0]:
antigen_seq = antigen_seq[:idx] + antigen_var[-1] + antigen_seq[idx + 1:]
except ValueError:
pass
if epitope[i].split(';')[-1].replace(' ', '') in EPITOPE:
merge_seq.append(antigen_seq[14:303] + str(antibody_seq1[i]) + str(antibody_seq2[i])
+ str(antibody_seq3[i]) + str(antibody_seq4[i]))
else:
merge_seq.append(antigen_seq[329:583] + str(antibody_seq1[i]) + str(antibody_seq2[i])
+ str(antibody_seq3[i]) + str(antibody_seq4[i]))
else:
if epitope[i].split(';')[-1].replace(' ', '') in EPITOPE:
merge_seq.append(atg_dic[antigen[i]][14:303] + str(antibody_seq1[i]) + str(antibody_seq2[i])
+ str(antibody_seq3[i]) + str(antibody_seq4[i]))
else:
merge_seq.append(atg_dic[antigen[i]][329:583] + str(antibody_seq1[i]) + str(antibody_seq2[i])
+ str(antibody_seq3[i]) + str(antibody_seq4[i]))
# label的剥离:live virus IC50和pseudo virus IC50
# # 1. LIVE_IC50
# LIVE_IC50_label_df = dataset[['Live Virus Neutralisation IC50 (50% titre; μg/ml)阈值2μg/ml']]
# LIVE_IC50_label_list = np.array(LIVE_IC50_label_df).squeeze().tolist()
# LIVE_IC50_index_list = label_list_split(LIVE_IC50_label_list)
# # 2. PSE_IC50
# PSE_IC50_label_df = dataset[['Pseudo Virus Neutralisation IC50 (50% titre; μg/ml)']]
# PSE_IC50_label_list = np.array(PSE_IC50_label_df).squeeze().tolist()
# PSE_IC50_index_list = label_list_split(PSE_IC50_label_list)
LIVE_exp_list = ['Live Virus Neutralisation IC50 (50% titre; μg/ml)阈值2μg/ml',
'Live Virus Neutralisation IC80 (80% titre; μg/ml)',
'Live Virus Neutralisation IC90 (90% titre; μg/ml)',
'Live Virus Neutralisation IC100 (100% titre; μg/ml)']
PSE_exp_list = ['Pseudo Virus Neutralisation IC50 (50% titre; μg/ml)',
'Pseudo Virus Neutralisation IC80 (80% titre; μg/ml)',
'Pseudo Virus Neutralisation IC90 (90% titre; μg/ml)',
'Pseudo Virus Neutralisation IC100 (100% titre; μg/ml)',
'Pseudo Virus Neutralisation (fold change)']
LIVE_IC_list = make_data_list(LIVE_exp_list, dataset)
PSE_IC_list = make_data_list(PSE_exp_list, dataset)
SPR_exp_list = ['SPR RBD (KD; nm)', 'SPR S1 (KD; nm)', 'SPR S2 (KD; nm)', 'SPR S-ECD (KD; nm)',
'SPR S (KD; nm)', 'SPR NTD (KD; nm)', 'SPR N (KD; nm)']
BLI_exp_list = ['BLI RBD (KD; nm)', 'BLI S1 (KD; nm)', 'BLI S (KD; nm)', 'BLI NTD (KD; nm)',
'BLI N (KD; nm)']
ELISA_exp_list = ['ELISA RBD competitive (IC50; μg/ml)', 'ELISA S1 competitive (IC50; μg/ml)',
'ELISA S competitive (IC50; μg/ml)', 'ELISA S competitive (IC80; μg/ml)',
'ELISA NTD competitive (IC50; μg/ml)', 'ELISA RBD binding (EC50; μg/ml)',
'ELISA S1 binding (EC50; μg/ml)', 'ELISA S binding (EC50; μg/ml)',
'ELISA N binding (EC50; μg/ml)']
FACS_exp_list = ['FACS RBD (IC50; nm/ml)', 'FACS S (IC50; nm/ml)']
SPR_list = make_data_list(SPR_exp_list, dataset)
FACS_list = make_data_list(FACS_exp_list, dataset)
BLI_list = make_data_list(BLI_exp_list, dataset)
ELISA_list = make_data_list(ELISA_exp_list, dataset)
dataframe = pd.DataFrame({'Name': antibody_list, 'Sequence': merge_seq, 'SPR': SPR_list,
'BLI': BLI_list, 'ELISA': ELISA_list, 'FCAS': FACS_list,
'LIVE_IC50': LIVE_IC_list,
'PSE_IC50': PSE_IC_list})
_name = _filename.split('.')[0]
dataframe.to_csv(r"./data/%s_rawEpitope.csv" % _name, sep=',', index=False)
if __name__ == '__main__':
generate_affinity_rawdata('Affinity_train_new_our_single_ori.csv')
generate_affinity_rawdata('Affinity_train_new_our_single_var.csv', True)
generate_affinity_rawdata('Affinity_train_new_our_mu_ori.csv', mu=True)
generate_affinity_rawdata('Affinity_train_new_our_mu_var.csv', True, mu=True)
generate_affinity_rawdata('Affinity_extraTrainData_new_our_single_ori.csv')
generate_affinity_rawdata('Affinity_extraTrainData_new_our_single_var.csv', True)
generate_affinity_rawdata('Affinity_extraTrainData_new_our_mu_ori.csv', mu=True)
generate_affinity_rawdata('Affinity_extraTrainData_new_our_mu_var.csv', True, mu=True)
generate_neutralization_rawdata('Neutralization_train_new_our_single_ori.csv')
generate_neutralization_rawdata('Neutralization_train_new_our_single_var.csv', True)
generate_neutralization_rawdata('Neutralization_train_new_our_mu_ori.csv', mu=True)
generate_neutralization_rawdata('Neutralization_train_new_our_mu_var.csv', True, mu=True)
# merge:
aff_ori = pd.read_csv("./data/Affinity_train_new_our_single_ori_rawEpitope.csv", encoding='gbk')
aff_var = pd.read_csv("./data/Affinity_train_new_our_single_var_rawEpitope.csv", encoding='gbk')
aff_muori = pd.read_csv("./data/Affinity_train_new_our_mu_ori_rawEpitope.csv", encoding='gbk')
aff_muvar = pd.read_csv("./data/Affinity_train_new_our_mu_var_rawEpitope.csv", encoding='gbk')
aff_merge = pd.concat([aff_ori, aff_var, aff_muori, aff_muvar], axis=0)
aff_merge.to_csv("./data/Affinity_train_new_our_merge_rawEpitope.csv", encoding='gbk')
affE_ori = pd.read_csv("./data/Affinity_extraTrainData_new_our_single_ori_rawEpitope.csv", encoding='gbk')
affE_var = pd.read_csv("./data/Affinity_extraTrainData_new_our_single_var_rawEpitope.csv", encoding='gbk')
affE_muori = pd.read_csv("./data/Affinity_extraTrainData_new_our_mu_ori_rawEpitope.csv", encoding='gbk')
affE_muvar = pd.read_csv("./data/Affinity_extraTrainData_new_our_mu_var_rawEpitope.csv", encoding='gbk')
affE_merge = pd.concat([affE_ori, affE_var, affE_muori, affE_muvar], axis=0)
affE_merge.to_csv("./data/Affinity_extraTrainData_new_our_merge_rawEpitope.csv", encoding='gbk')
Neu_ori = pd.read_csv("./data/Neutralization_train_new_our_single_ori_rawEpitope.csv", encoding='gbk')
Neu_var = pd.read_csv("./data/Neutralization_train_new_our_single_var_rawEpitope.csv", encoding='gbk')
Neu_muori = pd.read_csv("./data/Neutralization_train_new_our_mu_ori_rawEpitope.csv", encoding='gbk')
Neu_muvar = pd.read_csv("./data/Neutralization_train_new_our_mu_var_rawEpitope.csv", encoding='gbk')
Neu_merge = pd.concat([Neu_ori, Neu_var, Neu_muori, Neu_muvar], axis=0)
Neu_merge.to_csv("./data/Neutralization_train_new_our_merge_rawEpitope.csv", encoding='gbk')
print("we ")