-
Notifications
You must be signed in to change notification settings - Fork 27
/
path_planner.py
executable file
·292 lines (259 loc) · 7.79 KB
/
path_planner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import math
import numpy as np
import bisect
class CubicSpline1D:
"""
1D Cubic Spline class
Parameters
----------
x : list
x coordinates for data points. This x coordinates must be
sorted
in ascending order.
y : list
y coordinates for data points
Examples
--------
You can interpolate 1D data points.
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x = np.arange(5)
>>> y = [1.7, -6, 5, 6.5, 0.0]
>>> sp = CubicSpline1D(x, y)
>>> xi = np.linspace(0.0, 5.0)
>>> yi = [sp.calc_position(x) for x in xi]
>>> plt.plot(x, y, "xb", label="Data points")
>>> plt.plot(xi, yi , "r", label="Cubic spline interpolation")
>>> plt.grid(True)
>>> plt.legend()
>>> plt.show()
.. image:: cubic_spline_1d.png
"""
def __init__(self, x, y):
h = np.diff(x)
if np.any(h < 0):
raise ValueError("x coordinates must be sorted in ascending order")
self.a, self.b, self.c, self.d = [], [], [], []
self.x = x
self.y = y
self.nx = len(x) # dimension of x
# calc coefficient a
self.a = [iy for iy in y]
# calc coefficient c
A = self.__calc_A(h)
B = self.__calc_B(h, self.a)
self.c = np.linalg.solve(A, B)
# calc spline coefficient b and d
for i in range(self.nx - 1):
d = (self.c[i + 1] - self.c[i]) / (3.0 * h[i])
b = 1.0 / h[i] * (self.a[i + 1] - self.a[i]) \
- h[i] / 3.0 * (2.0 * self.c[i] + self.c[i + 1])
self.d.append(d)
self.b.append(b)
def calc_position(self, x):
"""
Calc `y` position for given `x`.
if `x` is outside the data point's `x` range, return None.
Returns
-------
y : float
y position for given x.
"""
if x < self.x[0]:
return None
elif x > self.x[-1]:
return None
i = self.__search_index(x)
dx = x - self.x[i]
position = self.a[i] + self.b[i] * dx + \
self.c[i] * dx ** 2.0 + self.d[i] * dx ** 3.0
return position
def calc_first_derivative(self, x):
"""
Calc first derivative at given x.
if x is outside the input x, return None
Returns
-------
dy : float
first derivative for given x.
"""
if x < self.x[0]:
return None
elif x > self.x[-1]:
return None
i = self.__search_index(x)
dx = x - self.x[i]
dy = self.b[i] + 2.0 * self.c[i] * dx + 3.0 * self.d[i] * dx ** 2.0
return dy
def calc_second_derivative(self, x):
"""
Calc second derivative at given x.
if x is outside the input x, return None
Returns
-------
ddy : float
second derivative for given x.
"""
if x < self.x[0]:
return None
elif x > self.x[-1]:
return None
i = self.__search_index(x)
dx = x - self.x[i]
ddy = 2.0 * self.c[i] + 6.0 * self.d[i] * dx
return ddy
def __search_index(self, x):
"""
search data segment index
"""
return bisect.bisect(self.x, x) - 1
def __calc_A(self, h):
"""
calc matrix A for spline coefficient c
"""
A = np.zeros((self.nx, self.nx))
A[0, 0] = 1.0
for i in range(self.nx - 1):
if i != (self.nx - 2):
A[i + 1, i + 1] = 2.0 * (h[i] + h[i + 1])
A[i + 1, i] = h[i]
A[i, i + 1] = h[i]
A[0, 1] = 0.0
A[self.nx - 1, self.nx - 2] = 0.0
A[self.nx - 1, self.nx - 1] = 1.0
return A
def __calc_B(self, h, a):
"""
calc matrix B for spline coefficient c
"""
B = np.zeros(self.nx)
for i in range(self.nx - 2):
B[i + 1] = 3.0 * (a[i + 2] - a[i + 1]) / h[i + 1]\
- 3.0 * (a[i + 1] - a[i]) / h[i]
return B
class CubicSpline2D:
"""
Cubic CubicSpline2D class
Parameters
----------
x : list
x coordinates for data points.
y : list
y coordinates for data points.
Examples
--------
You can interpolate a 2D data points.
>>> import matplotlib.pyplot as plt
>>> x = [-2.5, 0.0, 2.5, 5.0, 7.5, 3.0, -1.0]
>>> y = [0.7, -6, 5, 6.5, 0.0, 5.0, -2.0]
>>> ds = 0.1 # [m] distance of each interpolated points
>>> sp = CubicSpline2D(x, y)
>>> s = np.arange(0, sp.s[-1], ds)
>>> rx, ry, ryaw, rk = [], [], [], []
>>> for i_s in s:
... ix, iy = sp.calc_position(i_s)
... rx.append(ix)
... ry.append(iy)
... ryaw.append(sp.calc_yaw(i_s))
... rk.append(sp.calc_curvature(i_s))
>>> plt.subplots(1)
>>> plt.plot(x, y, "xb", label="Data points")
>>> plt.plot(rx, ry, "-r", label="Cubic spline path")
>>> plt.grid(True)
>>> plt.axis("equal")
>>> plt.xlabel("x[m]")
>>> plt.ylabel("y[m]")
>>> plt.legend()
>>> plt.show()
.. image:: cubic_spline_2d_path.png
>>> plt.subplots(1)
>>> plt.plot(s, [np.rad2deg(iyaw) for iyaw in ryaw], "-r", label="yaw")
>>> plt.grid(True)
>>> plt.legend()
>>> plt.xlabel("line length[m]")
>>> plt.ylabel("yaw angle[deg]")
.. image:: cubic_spline_2d_yaw.png
>>> plt.subplots(1)
>>> plt.plot(s, rk, "-r", label="curvature")
>>> plt.grid(True)
>>> plt.legend()
>>> plt.xlabel("line length[m]")
>>> plt.ylabel("curvature [1/m]")
.. image:: cubic_spline_2d_curvature.png
"""
def __init__(self, x, y):
self.s = self.__calc_s(x, y)
self.sx = CubicSpline1D(self.s, x)
self.sy = CubicSpline1D(self.s, y)
def __calc_s(self, x, y):
dx = np.diff(x)
dy = np.diff(y)
self.ds = np.hypot(dx, dy)
s = [0]
s.extend(np.cumsum(self.ds))
return s
def calc_position(self, s):
"""
calc position
Parameters
----------
s : float
distance from the start point. if `s` is outside the data point's
range, return None.
Returns
-------
x : float
x position for given s.
y : float
y position for given s.
"""
x = self.sx.calc_position(s)
y = self.sy.calc_position(s)
return x, y
def calc_curvature(self, s):
"""
calc curvature
Parameters
----------
s : float
distance from the start point. if `s` is outside the data point's
range, return None.
Returns
-------
k : float
curvature for given s.
"""
dx = self.sx.calc_first_derivative(s)
ddx = self.sx.calc_second_derivative(s)
dy = self.sy.calc_first_derivative(s)
ddy = self.sy.calc_second_derivative(s)
k = (ddy * dx - ddx * dy) / ((dx ** 2 + dy ** 2)**(3 / 2))
return k
def calc_yaw(self, s):
"""
calc yaw
Parameters
----------
s : float
distance from the start point. if `s` is outside the data point's
range, return None.
Returns
-------
yaw : float
yaw angle (tangent vector) for given s.
"""
dx = self.sx.calc_first_derivative(s)
dy = self.sy.calc_first_derivative(s)
yaw = math.atan2(dy, dx)
return yaw
def calc_spline_course(x, y, ds=0.1):
sp = CubicSpline2D(x, y)
s = list(np.arange(0, sp.s[-1], ds))
rx, ry, ryaw, rk = [], [], [], []
for i_s in s:
ix, iy = sp.calc_position(i_s)
rx.append(ix)
ry.append(iy)
ryaw.append(sp.calc_yaw(i_s))
rk.append(sp.calc_curvature(i_s))
return rx, ry, ryaw, rk