-
Notifications
You must be signed in to change notification settings - Fork 9
/
train.py
150 lines (127 loc) · 5.18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# coding=utf-8
import argparse
import sys
import os
from importlib import import_module
import numpy as np
import torch
from torch import nn, optim
import torch.nn.functional as F
from torch.backends import cudnn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision.utils import make_grid
from data import RAW2RGBData
from tqdm import tqdm
from utils import save_checkpoint, plot_grad_flow, init_weights
parser = argparse.ArgumentParser(description="Training Script")
parser.add_argument("--name", required=True, type=str, help="name for training version")
parser.add_argument("--div", type=int, default=88800, help="division of train && test data. Default=88000")
parser.add_argument("--batchSize", type=int, default=64, help="training batch size. Default=64")
parser.add_argument("--threads", type=int, default=8, help="threads for data loader to use. Default=8")
parser.add_argument("--decay_epoch", type=int, default=200, help="epoch from which to start lr decay. Default=1000")
parser.add_argument("--resume", default="", type=str, help="path to checkpoint. Default: none")
parser.add_argument("--start-epoch", default=1, type=int, help="Manual epoch number. Default=1")
parser.add_argument("--n-epoch", type=int, default=2000, help="number of epochs to train. Default=2000")
parser.add_argument("--cuda", default=True, action="store_true", help="Use cuda?")
parser.add_argument("--lr", type=float, default=0.0001, help="learning rate. Default=1e-4")
parser.add_argument("--size", type=int, default=64, help="size that crop image into")
parser.add_argument(
"--model",
required=True,
type=str,
help="name of model for this training"
)
parser.add_argument(
"--data_root",
required=True,
type=str,
help="path to load train datasets"
)
parser.add_argument(
"--checkpoint",
required=True,
type=str,
help="path to save checkpoints"
)
opts = parser.parse_args()
print(opts)
writer = SummaryWriter(comment=opts.name)
writer.add_text("command", " ".join(sys.argv))
KWAI_SEED = 666
torch.manual_seed(KWAI_SEED)
np.random.seed(KWAI_SEED)
cuda = opts.cuda
cudnn.benchmark = True
train_dataset = RAW2RGBData(opts.data_root, patch_size=opts.size)
test_datasets = RAW2RGBData(opts.data_root, test=True)
training_data_loader = DataLoader(
dataset=train_dataset,
batch_size=opts.batchSize,
pin_memory=True,
shuffle=True,
num_workers=opts.threads,
)
testing_data_loader = DataLoader(
dataset=test_datasets,
batch_size=1,
num_workers=1,
)
model = import_module('models.' + opts.model.lower()).make_model(opts)
model_define_r = open(os.path.join("models", opts.model.lower() + ".py"), 'r')
model_define = model_define_r.read()
writer.add_text("models", model_define)
model_define_r.close()
criterion = nn.L1Loss()
# init_weights(model, 'orthogonal')
if opts.resume:
if os.path.isfile(opts.resume):
print("======> loading checkpoint at '{}'".format(opts.resume))
checkpoint = torch.load(opts.resume)
model.load_state_dict(checkpoint["state_dict_model"], strict=False)
else:
print("======> founding no checkpoint at '{}'".format(opts.resume))
if cuda:
model = nn.DataParallel(model).cuda()
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=opts.lr, betas=(0.9, 0.999))
# optimizer = optim.Adam(model.parameters(), lr=opts.lr, betas=(0.9, 0.999))
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=opts.decay_epoch, gamma=0.1)
for epoch in range(opts.start_epoch, opts.n_epoch + 1):
print("epoch =", epoch, "lr =", optimizer.param_groups[0]["lr"])
model.train()
pbar = tqdm(training_data_loader)
output = None
for iteration, batch in enumerate(pbar):
data, label = batch[0], batch[1]
data = data.cuda() if opts.cuda else data.cpu()
label = label.cuda() if opts.cuda else label.cpu()
model.zero_grad()
output = model(data)
loss = criterion(output, label)
loss.backward()
optimizer.step()
if iteration % 100 == 0:
pbar.set_description("Epoch[{}]({}/{}): Loss: {:.4f}".format(
epoch, iteration, len(training_data_loader), loss.item())
)
writer.add_scalar("l1loss", loss.item(), iteration+(epoch-1)*len(training_data_loader))
lr_scheduler.step(epoch=epoch)
writer.add_image("output", make_grid(output, range=[0., 1.]), epoch)
save_checkpoint(model, opts.name, None, epoch, opts.checkpoint)
if epoch % 1 == 0:
mean_psnr = 0
model.eval()
for iteration, batch in enumerate(testing_data_loader, 1):
data, label = batch[0], batch[1]
data = data.cuda() if opts.cuda else data.cpu()
label = label.cuda() if opts.cuda else label.cpu()
with torch.no_grad():
output = model(data)
output = torch.clamp(output, 0.0, 1.0)
mse = F.mse_loss(output, label)
psnr = 10 * np.log10(1.0 / mse.item())
mean_psnr += psnr
mean_psnr /= len(testing_data_loader)
writer.add_scalar("mean_psnr", mean_psnr, epoch)
print("Vaild epoch %d psnr: %f" % (epoch, mean_psnr))
writer.close()