-
Notifications
You must be signed in to change notification settings - Fork 0
/
my_answers.py
63 lines (54 loc) · 2.09 KB
/
my_answers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
import keras
# TODO: fill out the function below that transforms the input series
# and window-size into a set of input/output pairs for use with our RNN model
def window_transform_series(series, window_size):
# containers for input/output pairs
X = []
y = []
for i in range(len(series)-window_size):
X.append(series[i:i+window_size])
y=series[window_size:]
# reshape each
X = np.asarray(X)
X.shape = (np.shape(X)[0:2])
y = np.asarray(y)
y.shape = (len(y),1)
return X,y
# TODO: build an RNN to perform regression on our time series input/output data
def build_part1_RNN(window_size):
model = Sequential()
model.add(LSTM(5, input_shape=(window_size,1)))
model.add(Dense(1,activation='linear'))
return model
### TODO: return the text input with only ascii lowercase and the punctuation given below included.
def cleaned_text(text):
punctuation = ['!', ',', '.', ':', ';', '?', ' ']
for l in range(0,97): #all before a
ll = chr(l)
if ll not in(punctuation):
text = text.replace(ll, ' ')
for l in range(123,255): #all after z
ll = chr(l)
if ll not in(punctuation):
text = text.replace(ll, ' ')
return text
### TODO: fill out the function below that transforms the input text and window-size into a set of input/output pairs for use with our RNN model
def window_transform_text(text, window_size, step_size):
# containers for input/output pairs
inputs = []
outputs = []
for i in range(0,len(text)-window_size,step_size):
inputs.append(text[i:i+window_size])
outputs.append(text[i+window_size])
return inputs,outputs
# TODO build the required RNN model:
# a single LSTM hidden layer with softmax activation, categorical_crossentropy loss
def build_part2_RNN(window_size, num_chars):
model = Sequential()
model.add(LSTM(200, input_shape = (window_size,num_chars)))
model.add(Dense(num_chars,activation='softmax'))
return model