-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
68 lines (54 loc) · 1.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import streamlit as st
import pickle
import string
import nltk.data
nltk.data.path.append('./nltk_data')
from nltk.corpus import stopwords
import nltk
from nltk.stem.porter import PorterStemmer
ps = PorterStemmer()
def transform_text(text):
text = text.lower()
text = nltk.word_tokenize(text)
y = []
for i in text:
if i.isalnum():
y.append(i)
text = y[:]
y.clear()
for i in text:
if i not in stopwords.words('english') and i not in string.punctuation:
y.append(i)
text = y[:]
y.clear()
for i in text:
y.append(ps.stem(i))
return " ".join(y)
# Loading vectorizer and model
try:
tfidf = pickle.load(open('vectorizer.pkl', 'rb'))
st.write("Vectorizer loaded successfully.")
except Exception as e:
st.error(f"Error loading vectorizer: {e}")
try:
model = pickle.load(open('model.pkl', 'rb'))
st.write("Model loaded successfully.")
except Exception as e:
st.error(f"Error loading model: {e}")
st.title("Email/SMS Spam Classifier")
input_sms = st.text_area("Enter the message")
if st.button('Predict'):
# 1. preprocess
transformed_sms = transform_text(input_sms)
# 2. vectorize
vector_input = tfidf.transform([transformed_sms])
# 3. predict
try:
result = model.predict(vector_input)[0]
# 4. Display
if result == 1:
st.header("Spam")
else:
st.header("Not Spam")
except Exception as e:
st.error(f"Error during prediction: {e}")