forked from kazukiosawa/pipe-fisher
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbert_optim.py
256 lines (215 loc) · 10.3 KB
/
bert_optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# coding=utf-8
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for BERT model."""
import math
import torch
from torch.optim import Optimizer
from torch.optim.optimizer import required
from torch.nn.utils import clip_grad_norm_
from torch.optim.lr_scheduler import _LRScheduler
class LRScheduler(_LRScheduler):
def __init__(self, optimizer, last_epoch=-1):
# Check if using mixed precision training
self.mixed_training = False
base_optimizer = optimizer
# Check that optimizer param is valid
if not isinstance(optimizer, Optimizer):
raise TypeError('{} is not an Optimizer'.format(
type(optimizer).__name__))
super(LRScheduler, self).__init__(base_optimizer, last_epoch)
def step(self, epoch=None):
# Set the current training step
# ('epoch' is used to be consistent with _LRScheduler)
if self.mixed_training:
# The assumption is that the step will be constant
state_dict = self.optimizer.state[self.optimizer.param_groups[0]['params'][0]]
if 'step' in state_dict:
self.last_epoch = state_dict['step'] + 1
else:
self.last_epoch = 1
else:
self.last_epoch = epoch if epoch is not None else self.last_epoch + 1
for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
param_group['lr'] = lr
class PolyWarmUpScheduler(LRScheduler):
"""
Applies a warm up period to the learning rate.
"""
def __init__(self, optimizer, warmup, total_steps, degree=0.5, last_epoch=-1, base_lr=1., device='cpu'):
self.warmup = torch.tensor(warmup, device=device)
self.total_steps = torch.tensor(total_steps, device=device)
self.degree = torch.tensor(degree, device=device)
device_last_epoch = torch.tensor(last_epoch, device=device)
self.base_lr = torch.tensor(base_lr, device=device)
self.device = device
super(PolyWarmUpScheduler, self).__init__(optimizer, device_last_epoch)
def step(self, epoch=None):
param_group = self.optimizer.param_groups[0]
if 'step' in param_group:
self.last_epoch = param_group['step'] + 1
else:
self.last_epoch = torch.tensor(1., device=self.device)
for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()):
param_group['lr'] = lr
def get_lr(self):
progress = self.last_epoch / self.total_steps
lr_tensor = torch.where(progress < self.warmup, self.base_lr * progress / self.warmup, self.base_lr * ((1.0 - progress) ** self.degree))
return [lr_tensor for _ in range(len(self.optimizer.param_groups))]
def warmup_cosine(x, warmup=0.002):
if x < warmup:
return x/warmup
return 0.5 * (1.0 + torch.cos(math.pi * x))
def warmup_constant(x, warmup=0.002):
if x < warmup:
return x/warmup
return 1.0
def warmup_linear(x, warmup=0.002):
if x < warmup:
return x/warmup
return max((x - 1.)/(warmup - 1.), 0.)
def warmup_poly(x, warmup=0.002, degree=0.5):
if x < warmup:
return x/warmup
return (1.0 - x)**degree
SCHEDULES = {
'warmup_cosine': warmup_cosine,
'warmup_constant': warmup_constant,
'warmup_linear': warmup_linear,
'warmup_poly': warmup_poly,
}
class BertAdam(Optimizer):
"""Implements BERT version of Adam algorithm with weight decay fix.
Params:
lr: learning rate
warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1
t_total: total number of training steps for the learning
rate schedule, -1 means constant learning rate. Default: -1
schedule: schedule to use for the warmup (see above). Default: 'warmup_linear'
b1: Adams b1. Default: 0.9
b2: Adams b2. Default: 0.999
e: Adams epsilon. Default: 1e-6
weight_decay: Weight decay. Default: 0.01
max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0
"""
def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear',
b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0, lars=False, weight_scaling=False):
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
if schedule not in SCHEDULES:
raise ValueError("Invalid schedule parameter: {}".format(schedule))
if not 0.0 <= warmup < 1.0 and not warmup == -1:
raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
if not 0.0 <= b1 < 1.0:
raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
if not 0.0 <= b2 < 1.0:
raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
if not e >= 0.0:
raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total,
b1=b1, b2=b2, e=e, weight_decay=weight_decay,
max_grad_norm=max_grad_norm, lars=lars, weight_scaling=weight_scaling)
super(BertAdam, self).__init__(params, defaults)
def get_lr(self):
lr = []
for group in self.param_groups:
for p in group['params']:
state = self.state[p]
if len(state) == 0:
return [0]
if group['t_total'] != -1:
schedule_fct = SCHEDULES[group['schedule']]
lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup'])
else:
lr_scheduled = group['lr']
lr.append(lr_scheduled)
return lr
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
if group['weight_scaling'] and 'p_norm' not in group:
group['p_norm'] = math.sqrt(sum(torch.square(p.data).sum() for p in group['params']))
for p in group['params']:
if p.grad is None:
continue
state = self.state[p]
# State initialization.
if len(state) == 0:
state['step'] = 0
if group['b1'] > 0:
# Exponential moving average of gradient values.
state['next_m'] = torch.zeros_like(p.data)
if group['b2'] > 0:
# Exponential moving average of squared gradient values.
state['next_v'] = torch.zeros_like(p.data)
beta1, beta2 = group['b1'], group['b2']
# Add grad clipping.
if group['max_grad_norm'] > 0:
clip_grad_norm_(p, group['max_grad_norm'])
# Decay the first and second moment running average coefficient.
# In-place operations to update the averages at the same time.
if beta1 > 0:
next_m = state['next_m']
next_m.mul_(beta1).add_(p.grad, alpha=1 - beta1)
else:
next_m = p.grad
if beta2 == -1:
update = next_m
else:
if beta2 > 0:
next_v = state['next_v']
next_v.mul_(beta2).addcmul_(p.grad, p.grad, value=1 - beta2)
else:
next_v = torch.square(p.grad)
update = next_m / (next_v.sqrt() + group['e'])
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if group['weight_decay'] > 0.0:
update += group['weight_decay'] * p.data
if group['lars']:
weight_norm = torch.norm(p.data).clamp(0, 10)
update_norm = torch.norm(update)
if weight_norm == 0 or update_norm == 0:
trust_ratio = 1
else:
trust_ratio = weight_norm / update_norm
else:
trust_ratio = 1.
state['trust_ratio'] = trust_ratio
if group['t_total'] != -1:
schedule_fct = SCHEDULES[group['schedule']]
lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup'])
else:
lr_scheduled = group['lr']
p.data.add_(update, alpha=-lr_scheduled * trust_ratio)
state['step'] += 1
if group['weight_scaling']:
p_norm = math.sqrt(sum(torch.square(p.data).sum() for p in group['params']))
if p_norm > 0:
for p in group['params']:
p.data.mul_(group['p_norm']/p_norm)
return loss