forked from liuzuyan/ElasticCache
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_rouge_qwen.py
executable file
·115 lines (98 loc) · 4.33 KB
/
convert_rouge_qwen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import torch
from tqdm import tqdm
import os
from torch.nn import CrossEntropyLoss
import json
device = "cuda"
import argparse
import torch
from cache_generate import generate, sample, greedy_search
import types
from qwen_generation_utils import make_context
from rouge import Rouge
from PIL import Image
import requests
from PIL import Image
from io import BytesIO
from transformers import TextStreamer
from transformers import AutoModelForCausalLM, AutoTokenizer
def load_image(image_file):
if image_file.startswith('http://') or image_file.startswith('https://'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
return image
def main(args):
with open(args.data_path, "r") as f:
data = json.load(f)
outputs_data_json = []
model_name = args.model_path.split('/')[-1]
dataset_name = args.data_path.split('/')[-1].split('.')[0]
tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(args.model_path, device_map="cuda", trust_remote_code=True, bf16=True).eval()
os.makedirs('logs_temp/', exist_ok=True)
data = data[:args.eval_samples]
for item in tqdm(data):
image_path = os.path.join(args.image_path, item["image"])
question = item['question']
answer = item['answer']
output_data_json = {}
output_data_json['image'] = item['image']
output_data_json['question'] = question
if "detail_1k" in args.data_path:
question = question.replace('<image>', '')
query = tokenizer.from_list_format([
{'image': image_path},
{'text': question}
])
raw_text, context_tokens = make_context(
tokenizer,
query,
history=None,
system="You are a helpful assistant.",
max_window_size=None,
chat_format='chatml',
)
input_ids = torch.tensor([context_tokens]).cuda()
answer_ids = tokenizer.encode(answer, return_tensors='pt').cuda()[:, 1:]
past_key_values = None
num_of_token = 0
output_ids = model.generate(
input_ids,
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
top_p=args.top_p,
num_beams=args.num_beams,
max_new_tokens=1024,
use_cache=True)
outputs_generate = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
output_data_json['answer'] = outputs_generate
outputs_data_json.append(output_data_json)
with open('./playground/data/' + dataset_name + '/rouge-' + model_name + '-' + dataset_name + '.json', 'w') as f:
json.dump(outputs_data_json, f, indent=4)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="./models/qwen-vl-chat")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--data-path", type=str, default="./playground/data/detail_1k/detail_1k.json")
parser.add_argument("--image-path", type=str, default="./playground/data/detail_1k/")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--conv-mode", type=str, default=None)
parser.add_argument("--temperature", type=float, default=0)
parser.add_argument("--max-new-tokens", type=int, default=512)
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--image-aspect-ratio", type=str, default='pad')
parser.add_argument("--start-size", type=int, default=1)
parser.add_argument("--recent-size", type=int, default=2047)
parser.add_argument("--eval-samples", type=int, default=218)
parser.add_argument("--exp-name", type=str, default='')
parser.add_argument("--method", type=str, default='elastic')
args = parser.parse_args()
main(args)