forked from boringlee24/HPCA22_SuperCloud
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
641 lines (554 loc) · 31.2 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
import matplotlib.pyplot as plt
from matplotlib.ticker import (MultipleLocator, FormatStrFormatter, AutoMinorLocator)
import plot_functions
import numpy as np
from collections import Counter
import matplotlib as mp
def plot_cdf_utilization(gpu_join):
fig, axs = plt.subplots(1, 2, figsize=(6.2,2.6), sharey=False, gridspec_kw={'hspace': 0.2, 'wspace': 0.19, 'bottom':0.28, 'left':0.12, 'right':0.99, 'top':0.96})
metric='smutilization_pct_avg'
sm_util = gpu_join[metric].sort_values().to_frame()
sm_cdf = sm_util.rank(pct=True)*100
metric='memoryutilization_pct_avg'
mem_util = gpu_join[metric].sort_values().to_frame()
mem_cdf = mem_util.rank(pct=True)*100
metric='maxgpumemoryused_bytes'
mem_used = gpu_join[metric].sort_values().to_frame()
mem_used = mem_used / mem_used.max() * 100
used_cdf = mem_used.rank(pct=True)*100
axs[0].set_xlabel('GPU Usage (%)', fontsize=13)
axs[0].set_ylabel('Empirical CDF (%)', fontsize=13)
axs[0].plot(sm_util, sm_cdf, label='SM Util.', color='orangered', ls='solid', lw=2.5)
axs[0].plot(mem_util, mem_cdf, label='Mem. Util.', color='navy', ls='dashed', lw=2.5)
axs[0].plot(mem_used, used_cdf, label='Mem. Used', color='lime', ls='dashdot', lw=2.5)
axs[0].legend(loc=4)
axs[0].set_ylim(0,100)
axs[0].set_xlim(0,100)
metric='pcietxbandwidth_megabytes_avg'
Tx = gpu_join[metric].sort_values().to_frame()
Tx_cdf = Tx.rank(pct=True)*100
metric='pcierxbandwidth_megabytes_avg'
Rx = gpu_join[metric].sort_values().to_frame()
Rx_cdf = Rx.rank(pct=True)*100
axs[1].set_xlabel('PCIe Bandwidth (MB)', fontsize=13)
axs[1].plot(Tx, Tx_cdf, label='Tx BW.', color='orangered', ls='solid', lw=2.5)
axs[1].plot(Rx, Rx_cdf, label='Rx BW.', color='navy', ls='dashed', lw=2.5)
axs[1].set_ylabel('', fontsize=13)
axs[1].legend(loc=4)
axs[1].set_ylim(0,100)
axs[1].set_xlim(0,)
axs[1].xaxis.set_major_locator(MultipleLocator(500))
tick_label = ['0', '0.5k', '1k', '1.5k', '2k']
for ax in axs:
ax.grid(which='major', axis='both', color='darkgrey', ls=':')
ax.tick_params(labelsize=13)
fig.text(0.3, 0.04, '(a)', ha='center', va='center', fontsize=12)
fig.text(0.78, 0.04, '(b)', ha='center', va='center', fontsize=12)
plt.show()
def plot_job_types_pie():
sizes=np.array([28174,8349,8965,1632])
sizes=sizes/sum(sizes)*100
sizes=np.round(sizes,1)
labels=["Mature", "Exploratory", "Development", "IDE"]
sizes_hours=np.array([824288434.4700054,728193112.2700019,177956408.22999993,384975397.70000017])
sizes_hours=sizes_hours/sum(sizes_hours)*100
sizes_hours=np.round(sizes_hours,1)
fig, ax = plt.subplots(1,2,figsize=(6.2, 3), subplot_kw=dict(aspect="equal"))
plt.rcParams['font.size'] = 15
colors=["maroon","orangered","salmon","mistyrose"]
wedgeprops={"edgecolor":"black",'linewidth': 1.5, 'linestyle': '-', 'antialiased': True,"width":0.5}
ax[0].pie(sizes, colors=colors, wedgeprops=wedgeprops, startangle=0, labels=[str(b)+" %" for b in sizes])
# fig.subplots_adjust(left=0.085, right=0.995, top=0.955, bottom=0.25, wspace=0.42)
fig.subplots_adjust(wspace=1)
ax[0].set_xlabel('(a) Num. Jobs',fontsize=18)
ax[1].pie(sizes_hours, colors=colors, wedgeprops=wedgeprops, startangle=50, labels=[str(b)+" %" for b in sizes_hours])
ax[1].set_xlabel('(b) Num. GPU Hours',fontsize=18)
ax[0].legend(labels ,ncol=4, loc='right', bbox_to_anchor=(3.5, 1.2),
fontsize=15,edgecolor='black',borderpad=0.3,handletextpad=0.3,handlelength=1,columnspacing=1.5)
plt.show()
def plot_users_and_job_types(gpu_user_join, gpu_user_join_rm_small_runtime):
gpu_user_join_rm_small_runtime['GPU_hours']=gpu_user_join_rm_small_runtime['totalexecutiontime_sec']*gpu_user_join_rm_small_runtime['GPU_Count']
gpu_user_join_rm_small_runtime['fail_type']=gpu_user_join_rm_small_runtime['state'].map({3:'Mature',4: 'Exploratory', 5: 'Development', 6: 'IDE',7: 'IDE',11: 'IDE',1024: 'IDE'})
'''
slurm "state" id -> slurm decoding -> % of jobs -> name used in paper
3 -> JOB_COMPLETE -> 59.8% -> Completed -> Mature
4 -> JOB_CANCELLED -> user cancel -> 17.72 % -> Cancelled -> Exploratory
5 -> JOB_FAILED -> 19.02% -> Failed (prev runtime error) -> Development
6 -> JOB_TIMEOUT -> 3.27 % -> Timeout+ -> IDE
7 -> JOB_NODE_FAIL -> 0.01 % -> Timeout+ -> IDE
11, 1024 -> No decodings 0.18% -> Timeout+ -> IDE
''';
gpu_user_join_rm_small_runtime_JOB_COMPLETE=gpu_user_join_rm_small_runtime[gpu_user_join_rm_small_runtime['state']==3]
gpu_user_join_rm_small_runtime_EXIT=gpu_user_join_rm_small_runtime[gpu_user_join_rm_small_runtime['state']!=3]
gpu_user_join_JOB_COMPLETE=gpu_user_join[gpu_user_join['state']==3]
gpu_user_join_EXIT=gpu_user_join[gpu_user_join['state']!=3]
gpu_user_join_rm_small_runtime_EXIT['fail_type']=gpu_user_join_rm_small_runtime_EXIT['state'].map({4: 'Canceled', 5: 'Failed', 6: 'Timeout+',7: 'Timeout+',11: 'Timeout+',1024: 'Timeout+'})
col_for_tk_exit=['totalexecutiontime_sec','avgmemoryutilization_pct','smutilization_pct_avg','maxgpumemoryused_bytes','GPU_Count','GPU_hours','fail_type']
col_for_tk=['totalexecutiontime_sec','avgmemoryutilization_pct','smutilization_pct_avg','maxgpumemoryused_bytes','GPU_Count','GPU_hours']
# gpu_user_join_rm_small_runtime_EXIT[col_for_tk_exit].to_csv('fail_job_stats.csv')
# gpu_user_join_rm_small_runtime_JOB_COMPLETE[col_for_tk].to_csv('complete_job_stats.csv')
df_all=gpu_user_join_rm_small_runtime[['id_user','GPU_hours']].groupby('id_user').sum()
df_any_fail=gpu_user_join_rm_small_runtime_EXIT[['id_user','GPU_hours']].groupby('id_user').sum()
df_Complete=gpu_user_join_rm_small_runtime_JOB_COMPLETE[['id_user','GPU_hours']].groupby('id_user').sum()
df_Canceled=gpu_user_join_rm_small_runtime_EXIT[gpu_user_join_rm_small_runtime_EXIT['fail_type']=='Canceled'][['id_user','GPU_hours']].groupby('id_user').sum()
df_Failed=gpu_user_join_rm_small_runtime_EXIT[gpu_user_join_rm_small_runtime_EXIT['fail_type']=='Failed'][['id_user','GPU_hours']].groupby('id_user').sum()
df_Timeout=gpu_user_join_rm_small_runtime_EXIT[gpu_user_join_rm_small_runtime_EXIT['fail_type']=='Timeout+'][['id_user','GPU_hours']].groupby('id_user').sum()
hash_users_Complete=set(df_Complete.index)
hash_users_Canceled=set(df_Canceled.index)
hash_users_Failed=set(df_Failed.index)
hash_users_Timeout=set(df_Timeout.index)
hash_users_any_fail=set(df_any_fail.index)
df_all['GPU_hours_Complete']=0
df_all['GPU_hours_Canceled']=0
df_all['GPU_hours_Failed']=0
df_all['GPU_hours_Timeout']=0
df_all['GPU_hours_any_fail']=0
for job in df_all.index:
if job in hash_users_Complete:
df_all.loc[job,'GPU_hours_Complete']=df_Complete.loc[job,'GPU_hours']
if job in hash_users_Canceled:
df_all.loc[job,'GPU_hours_Canceled']=df_Canceled.loc[job,'GPU_hours']
if job in hash_users_Failed:
df_all.loc[job,'GPU_hours_Failed']=df_Failed.loc[job,'GPU_hours']
if job in hash_users_Timeout:
df_all.loc[job,'GPU_hours_Timeout']=df_Timeout.loc[job,'GPU_hours']
if job in hash_users_any_fail:
df_all.loc[job,'GPU_hours_any_fail']=df_any_fail.loc[job,'GPU_hours']
df_all2=gpu_user_join_rm_small_runtime[['id_user','GPU_hours']].groupby('id_user').count().rename(columns={'GPU_hours':'Jobs'})
df_Complete=gpu_user_join_rm_small_runtime_JOB_COMPLETE[['id_user','GPU_hours']].groupby('id_user').count().rename(columns={'GPU_hours':'Jobs'})
df_Canceled=gpu_user_join_rm_small_runtime_EXIT[gpu_user_join_rm_small_runtime_EXIT['fail_type']=='Canceled'][['id_user','GPU_hours']].groupby('id_user').count().rename(columns={'GPU_hours':'Jobs'})
df_Failed=gpu_user_join_rm_small_runtime_EXIT[gpu_user_join_rm_small_runtime_EXIT['fail_type']=='Failed'][['id_user','GPU_hours']].groupby('id_user').count().rename(columns={'GPU_hours':'Jobs'})
df_Timeout=gpu_user_join_rm_small_runtime_EXIT[gpu_user_join_rm_small_runtime_EXIT['fail_type']=='Timeout+'][['id_user','GPU_hours']].groupby('id_user').count().rename(columns={'GPU_hours':'Jobs'})
hash_users_Complete=set(df_Complete.index)
hash_users_Canceled=set(df_Canceled.index)
hash_users_Failed=set(df_Failed.index)
hash_users_Timeout=set(df_Timeout.index)
df_all2['jobs_Complete']=0
df_all2['jobs_Canceled']=0
df_all2['jobs_Failed']=0
df_all2['jobs_Timeout']=0
for job in df_all2.index:
if job in hash_users_Complete:
df_all2.loc[job,'jobs_Complete']=df_Complete.loc[job,'Jobs']
if job in hash_users_Canceled:
df_all2.loc[job,'jobs_Canceled']=df_Canceled.loc[job,'Jobs']
if job in hash_users_Failed:
df_all2.loc[job,'jobs_Failed']=df_Failed.loc[job,'Jobs']
if job in hash_users_Timeout:
df_all2.loc[job,'jobs_Timeout']=df_Timeout.loc[job,'Jobs']
gpu_user_join_rm_small_runtime['time_wait']=gpu_user_join_rm_small_runtime['time_start']-gpu_user_join_rm_small_runtime['time_submit']
metric='GPU_hours_Complete_pct'
df_all[metric]=(df_all['GPU_hours_Complete']/df_all['GPU_hours'])*100
metric='GPU_hours_Canceled_pct'
df_all[metric]=(df_all['GPU_hours_Canceled']/df_all['GPU_hours'])*100
metric='GPU_hours_Failed_pct'
df_all[metric]=(df_all['GPU_hours_Failed']/df_all['GPU_hours'])*100
metric='GPU_hours_Timeout_pct'
df_all[metric]=(df_all['GPU_hours_Timeout']/df_all['GPU_hours'])*100
metric='jobs_Complete_pct'
df_all2[metric]=(df_all2['jobs_Complete']/df_all2['Jobs'])*100
metric='jobs_Canceled_pct'
df_all2[metric]=(df_all2['jobs_Canceled']/df_all2['Jobs'])*100
metric='jobs_Failed_pct'
df_all2[metric]=(df_all2['jobs_Failed']/df_all2['Jobs'])*100
metric='jobs_Timeout_pct'
df_all2[metric]=(df_all2['jobs_Timeout']/df_all2['Jobs'])*100
df_tmp=df_all[['GPU_hours_Complete_pct','GPU_hours_Canceled_pct','GPU_hours_Failed_pct','GPU_hours_Timeout_pct']]
df_tmp['dummy_col']=df_tmp['GPU_hours_Complete_pct']+df_tmp['GPU_hours_Canceled_pct']
df_tmp=df_tmp.sort_values('GPU_hours_Complete_pct')
gpuh_data=(df_tmp.transpose().to_numpy().tolist())
df_tmp=df_all2[['jobs_Complete_pct','jobs_Canceled_pct','jobs_Failed_pct','jobs_Timeout_pct']]
df_tmp['dummy_col']=df_tmp['jobs_Complete_pct']+df_tmp['jobs_Canceled_pct']
df_tmp=df_tmp.sort_values('jobs_Complete_pct')
jobs_data=(df_tmp.transpose().to_numpy().tolist())
jobs_data = jobs_data
gpuh_data = gpuh_data
fig = plt.figure(figsize=(5.5, 2.5))
fig.subplots_adjust(left=0.125, top=0.83, right=0.965, bottom=0.205, wspace=0.55)
axl = fig.add_subplot(111, frameon=False)
axl.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False)
axl.set_xticks([])
axl.set_yticks([])
ax = fig.add_subplot(121)
d0 = jobs_data[0]
d1 = [jobs_data[0][j] + jobs_data[1][j] for j in range(len(d0))]
d2 = [jobs_data[0][j] + jobs_data[1][j] + jobs_data[2][j] for j in range(len(d0))]
d3 = [jobs_data[0][j] + jobs_data[1][j] + jobs_data[2][j] + jobs_data[3][j] for j in range(len(d0))]
plots = []
plots.append(ax.fill_between(range(len(d0)), 0, d0, color='maroon'))
plots.append(ax.fill_between(range(len(d0)), d0, d1, color='orangered'))
plots.append(ax.fill_between(range(len(d0)), d1, d2, color='salmon'))
plots.append(ax.fill_between(range(len(d0)), d2, d3, color='mistyrose'))
ax.set_xticks(np.linspace(0, len(d0)-1, 5))
ax.set_xticklabels([str(y) for y in range(0, 101, 25)])
ax.set_yticks(range(0, 101, 25))
ax.grid(color='white', linestyle=':',linewidth=1)
ax.set_xlim([0, len(d0)-1])
ax.set_ylim([0, 100])
plt.setp(ax.get_xticklabels(), fontsize=13)
plt.setp(ax.get_yticklabels(), fontsize=13)
ax.set_xlabel('Num. Users (%)', fontsize=13)
ax.set_ylabel('Num. Jobs (%)', fontsize=13)
ax = fig.add_subplot(122)
d0 = gpuh_data[0]
d1 = [gpuh_data[0][j] + gpuh_data[1][j] for j in range(len(d0))]
d2 = [gpuh_data[0][j] + gpuh_data[1][j] + gpuh_data[2][j] for j in range(len(d0))]
d3 = [gpuh_data[0][j] + gpuh_data[1][j] + gpuh_data[2][j] + gpuh_data[3][j] for j in range(len(d0))]
plots = []
plots.append(ax.fill_between(range(len(d0)), 0, d0, color='maroon'))
plots.append(ax.fill_between(range(len(d0)), d0, d1, color='orangered'))
plots.append(ax.fill_between(range(len(d0)), d1, d2, color='salmon'))
plots.append(ax.fill_between(range(len(d0)), d2, d3, color='mistyrose'))
ax.set_xticks(np.linspace(0, len(d0)-1, 5))
ax.set_xticklabels([str(y) for y in range(0, 101, 25)])
ax.set_yticks(range(0, 101, 25))
ax.set_xlim([0, len(d0)-1])
ax.set_ylim([0, 100])
ax.grid(color='white', linestyle=':',linewidth=1)
plt.setp(ax.get_xticklabels(), fontsize=13)
plt.setp(ax.get_yticklabels(), fontsize=13)
ax.set_xlabel('Num. Users (%)', fontsize=13)
ax.set_ylabel('Num. GPU\nHours (%)', fontsize=13)
axl.legend(plots, ['Mature', 'Exploratory', 'Development', 'IDE'],
bbox_to_anchor=(0.0, 1.075, 1.0, 0.102), loc='lower left', ncol=4,
borderaxespad=0., fontsize=13, edgecolor='black', mode='expand',
handletextpad=0.2, borderpad=0.3, handlelength=1.2)
plt.show()
def plot_multi_gpu_jobs(gpu_user_join_rm_small_runtime):
df=gpu_user_join_rm_small_runtime #filter small runtime jobs for this
dict_gpu_job_count=Counter(df['GPU_Range'])
sorted_list=sorted(dict_gpu_job_count.items(), key=lambda k: k[0])
print ("GPU Count Range","\t","Jobs","\t","Percentage_of_jobs")
for code, jobs in sorted_list:
print (code,"\t",jobs,"\t",round(jobs/df.shape[0]*100,2))
pct_list=[f"{np.round(lst[1]/gpu_user_join_rm_small_runtime.shape[0]*100,1)}" for lst in sorted_list]
label_list=[f"{lst[0]}" for lst in sorted_list]
label_list=['1 GPU','2 GPUs','3-8 GPUs','>8 GPUs']
gpu_user_join_rm_small_runtime['GPU_hours']=gpu_user_join_rm_small_runtime.GPU_Count*gpu_user_join_rm_small_runtime.totalexecutiontime_sec
df1=gpu_user_join_rm_small_runtime.groupby('GPU_Range').sum()['GPU_hours']
pct_list2=(df1/sum(df1)*100).values
pct_list2=pct_list2.round(1)
fig, ax = plt.subplots(1,2,figsize=(6.2, 3), subplot_kw=dict(aspect="equal"))
fig.subplots_adjust(wspace=1)
plt.rcParams['font.size'] = 15
wedges, texts = ax[0].pie(pct_list, colors=["azure","aqua","teal","navy"],\
wedgeprops={"edgecolor":"black",'linewidth': 1.5, 'linestyle': '-',\
'antialiased': True,"width":0.5}, startangle=0, labels=[str(pct_list[0])+'%',\
str(pct_list[1])+'%','',''],textprops={'fontsize': 15})
kw = dict(arrowprops=dict(arrowstyle="-"),
zorder=0, va="center")
for i, p in enumerate(wedges):
if i == 2:
ang = (p.theta2 - p.theta1)/2. + p.theta1 -3
y = np.sin(np.deg2rad(ang))
x = np.cos(np.deg2rad(ang))
horizontalalignment = {-1: "right", 1: "left"}[int(np.sign(x))]
connectionstyle = "angle,angleA=0,angleB={}".format(ang)
kw["arrowprops"].update({"connectionstyle": connectionstyle})
ax[0].annotate(str(pct_list[i])+'%', xy=(x, y), xytext=(1.7*np.sign(x), 1.7*y),
horizontalalignment=horizontalalignment, **kw,fontsize=15)
if i == 3:
ang = (p.theta2 - p.theta1)/2. + p.theta1 + 3
y = np.sin(np.deg2rad(ang))
x = np.cos(np.deg2rad(ang))
horizontalalignment = {-1: "right", 1: "left"}[int(np.sign(x))]
connectionstyle = "angle,angleA=0,angleB={}".format(ang)
kw["arrowprops"].update({"connectionstyle": connectionstyle})
ax[0].annotate(str(pct_list[i])+'%', xy=(x, y), xytext=(1.7*np.sign(x), 1.7*y),
horizontalalignment=horizontalalignment, **kw,fontsize=15)
ax[0].legend(label_list ,ncol=4, loc='right', bbox_to_anchor=(3.2, 1.2),
fontsize=15,edgecolor='black',borderpad=0.3,handletextpad=0.3,handlelength=1,columnspacing=1.5)
ax[1].pie(pct_list2, colors=["azure","aqua","teal","navy"],wedgeprops={"edgecolor":"black",'linewidth': 1.5,\
'linestyle': '-', 'antialiased': True,"width":0.5}, startangle=0, \
labels=[str(pct_list2[0])+'%', str(pct_list2[1])+'%',str(pct_list2[2])+'%',str(pct_list2[3])+'%'],\
textprops={'fontsize': 15})
ax[0].set_xlabel('(a) Num. Jobs',fontsize=18)
ax[1].set_xlabel('(b) Num. GPU Hours',fontsize=18)
plt.show()
def plot_jobs_by_same_user(gpu_user_join_rm_small_runtime):
gpu_user_join_rm_small_runtime['maxgpumemoryused_bytes_pct']=gpu_user_join_rm_small_runtime['maxgpumemoryused_bytes']/3.2e+10*100
fig = plt.figure(figsize=(7, 2.2))
fig.subplots_adjust(left=0.125, right=0.99, top=0.895, bottom=0.245, wspace=0.1)
axl = fig.add_subplot(111, frameon=False)
axl.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False)
axl.set_xticks([])
axl.set_yticks([])
gs = fig.add_gridspec(1, 4)
ax = []
metric=['totalexecutiontime_sec', 'smutilization_pct_avg','avgmemoryutilization_pct','maxgpumemoryused_bytes_pct']
xlabel=['Avg. Run Time\n (Minute)', 'Avg. SM \nUtil. (%)','Avg. Mem \nUtil. (%)','Avg. Mem \nSize (%)']
color=['pink','hotpink','mediumvioletred','indigo'][::-1]
style=['-','--','-.','-']
# xlabel=['Average SM Utilization %','']
for i in range(4):
ax.append(fig.add_subplot(gs[0, i]))
ax[i].set_axisbelow(True)
ax[i].grid(color='darkgrey', linestyle=':')
tmp_df=gpu_user_join_rm_small_runtime[['id_user',metric[i]]].groupby('id_user')[metric[i]]
mean_series=tmp_df.mean()
mean_df=mean_series.sort_values()
if i==0:
mean_df=mean_df/60 #convert to minutes
val = mean_df.values.tolist()
x_pos = (np.arange(len(mean_df))/(len(mean_df)-1))*100
ax[i].plot(val , x_pos ,linestyle=style[i],linewidth=2,color=color[i])
# ax[i].legend(fontsize=15,edgecolor='black',borderpad=0.3,handletextpad=0.3,handlelength=1.5,labelspacing=0.2,frameon=False)
md = 0
ax[i].set_xlim((0, 100))
ax[i].set_ylim((0, 100))
if i == 0:
ax[i].set_ylabel('Empirical CDF\n(% of Users)', fontsize=14)
else:
ax[i].set_yticklabels([])
plt.setp(ax[i].get_xticklabels(), fontsize=14)
plt.setp(ax[i].get_yticklabels(), fontsize=14)
ax[i].set_xlabel(xlabel[i], fontsize=14)
ax[i].set_xticks([0, 25, 50, 75])
if i == 0:
ax[i].set_xscale('log')
ax[i].set_xlim((10**-1, 10**4))
plt.show()
def plot_cdf_types(gpu_join):
types = ['map_reduce', 'batch', 'iteractive', 'other']
jobs = {}
jobs['map_reduce'] = gpu_join[gpu_join.job_type == 'LLMAPREDUCE:MAP']
jobs['batch'] = gpu_join[gpu_join.job_type == 'LLSUB:BATCH']
jobs['interactive'] = gpu_join[gpu_join.job_type == 'LLSUB:INTERACTIVE']
jobs['other'] = gpu_join[gpu_join.job_type == 'OTHER']
fig, axs = plt.subplots(1, 2, figsize=(6,2.5), sharey=False, gridspec_kw={'hspace': 0.2, 'wspace': 0.19, 'bottom':0.28, 'left':0.12, 'right':0.98, 'top':0.96})
colors = ['orangered', 'navy', 'lime', 'orchid', 'gold']
styles = ['solid', 'dashed', 'dashdot', 'dotted']
for key, val in jobs.items():
index = list(jobs.keys()).index(key)
x = val.smutilization_pct_avg.sort_values().to_frame()
y = x.rank(pct=True)*100
axs[0].plot(x, y, label=key, ls=styles[index], color=colors[index], lw=2)
axs[0].set_xlabel('SM Utilization (%)', fontsize=13)
axs[0].set_ylabel('Empirical CDF (%)', fontsize=13)
axs[0].set_xlim(-1,80)
for key, val in jobs.items():
index = list(jobs.keys()).index(key)
x = val.memoryutilization_pct_avg.sort_values().to_frame()
y = x.rank(pct=True)*100
axs[1].plot(x, y, label=key, ls=styles[index], color=colors[index], lw=2)
axs[1].set_xlabel('Memory Utilization (%)', fontsize=13)
axs[1].set_xlim(-1,50)
axs[1].xaxis.set_major_locator(MultipleLocator(10))
for ax in axs:
ax.set_ylim(-1,100)
ax.grid(which='major', axis='both', color='darkgrey', ls=':')
ax.tick_params(labelsize=13)
ax.yaxis.set_major_locator(MultipleLocator(20))
axs[1].legend(loc=4, handlelength=3, fontsize=11)
fig.text(0.3, 0.04, '(a)', ha='center', va='center', fontsize=12)
fig.text(0.78, 0.04, '(b)', ha='center', va='center', fontsize=12)
plt.show()
def plot_power_cap(gpu_join):
fig, axs = plt.subplots(1, 2, figsize=(6.2,2.8), sharey=False, gridspec_kw={'hspace': 0.3, 'wspace': 0.3, 'bottom':0.25, 'left':0.11, 'right':0.98, 'top':0.8})
metric='powerusage_watts_avg'
avg_pwr = gpu_join[metric].sort_values().to_frame()
avg_cdf = avg_pwr.rank(pct=True)*100
avg_pwr_list = gpu_join[metric].tolist()
metric='powerusage_watts_max'
max_pwr = gpu_join[metric].sort_values().to_frame()
max_cdf = max_pwr.rank(pct=True)*100
max_pwr_list = gpu_join[metric].tolist()
axs[0].set_xlabel('GPU Power (Watt)', fontsize=12.5)
axs[0].set_ylabel('Empirical CDF (%)', fontsize=12.5)
axs[0].plot(avg_pwr, avg_cdf, label='Avg. Power', color='orangered', ls='solid', lw=2.5)
axs[0].plot(max_pwr, max_cdf, label='Max. Power', color='navy', ls='dashed', lw=2.5)
axs[0].legend(loc='upper left', ncol=1, mode="expand",
borderaxespad=0.1, edgecolor='black', handletextpad=0.5, handlelength=2.5, fontsize=10, bbox_to_anchor=(-0.,0.85,.6,0.5))
axs[0].set_ylim(0,100)
axs[0].set_xlim(25,300)
axs[0].xaxis.set_major_locator(MultipleLocator(50))
axs[0].xaxis.set_minor_locator(MultipleLocator(25))
axs[0].grid(which='both', axis='both', color='darkgrey', ls=':')
########## power capping #################
caps = [150, 200, 250]
total = len(avg_pwr)
x = np.arange(len(caps))
width = 0.3
max_pct = []
avg_pct = []
none_pct = []
for cap in caps:
pwr_thr = cap
unaffected = 0
avg_affect = 0
max_affect = 0
for i in range(total):
if max_pwr_list[i] <= pwr_thr:
unaffected += 1
elif avg_pwr_list[i] <= pwr_thr:
max_affect += 1
elif avg_pwr_list[i] > pwr_thr:
avg_affect += 1
else:
print('error: should not exist')
sys.exit()
none_pct.append(round(unaffected / total * 100,2))
avg_pct.append(round(avg_affect / total * 100,2))
max_pct.append(round(max_affect / total * 100,2))
labels = [str(cap) for cap in caps]
axs[1].bar(x-width/2, none_pct, width, label='No Impact', color='orangered', alpha=0.5, edgecolor='black')#'darksalmon')
axs[1].bar(x+width/2, avg_pct, width, label='Avg. Pwr.', color='navy', alpha=0.8, edgecolor='black')#'darkturquoise')
axs[1].bar(x+width/2, max_pct, width, label='Max. Pwr.', bottom=np.asarray(avg_pct), color='lime', alpha=0.5, edgecolor='black')#'darkseagreen')
axs[1].set_xticks(x)
axs[1].set_xticklabels(labels)
axs[1].set_xlabel('Power Cap (Watt)', fontsize=12.5)
axs[1].set_ylabel('Impacted Jobs (%)', fontsize=12.5)
axs[1].set_ylim(0,95)
handles, labels = axs[1].get_legend_handles_labels()
#axs[1].legend(loc=2)
#plt.figlegend(handles, labels, loc='upper left', ncol=3, mode="expand",
# borderaxespad=0.1, edgecolor='black', handletextpad=0.5, handlelength=2, fontsize=10, bbox_to_anchor=(0.4,0.5,0.58,0.5))
axs[1].legend(loc='upper left', ncol=2, mode="expand",
borderaxespad=0.1, edgecolor='black', handletextpad=0.5, handlelength=2., fontsize=10, bbox_to_anchor=(-0.,0.85,1,0.5))
axs[1].yaxis.set_major_locator(MultipleLocator(20))
axs[1].yaxis.set_minor_locator(MultipleLocator(10))
axs[1].grid(which='both', axis='y', ls=':', color='darkgrey')
for ax in axs:
ax.tick_params(labelsize=12.5)
fig.text(0.3, 0.04, '(a)', ha='center', va='center', fontsize=12)
fig.text(0.78, 0.04, '(b)', ha='center', va='center', fontsize=12)
plt.show()
def plot_bottlenecks(gpu_join):
bottlenecks = {'Mem. Util.': 'memoryutilization_pct_max', 'SM Util.': 'smutilization_pct_max', 'PCIe Rx': 'pcierxbandwidth_megabytes_max', 'PCIe Tx': 'pcietxbandwidth_megabytes_max', 'Mem. Size': 'maxgpumemoryused_bytes'}
bound = {'SM Util.': 100, 'Mem. Util.': 100, 'Mem. Size': gpu_join.maxgpumemoryused_bytes.max(), 'PCIe Tx': gpu_join.pcietxbandwidth_megabytes_max.max(), 'PCIe Rx': gpu_join.pcierxbandwidth_megabytes_max.max()}
bounded = {}
total = len(gpu_join)
for key, val in bottlenecks.items():
num_bounded = len(gpu_join[gpu_join[val] >= bound[key] * 0.99])
bounded[key] = num_bounded / total * 100
y = list(bounded.values())
x = list(bounded.keys())
data = [x, ('title', y)]
N = len(data[0])
theta = plot_functions.radar_factory(N, frame='polygon')
fig, axs = plt.subplots(1,1,figsize=(4, 4), subplot_kw=dict(projection='radar'))
spoke_labels = data.pop(0)
title, case_data = data[0]
#axs[0].set_title(title, position=(0.5, 1.1), ha='center')
axs.set_ylim(0,25)
axs.set_yticks(np.arange(5,26,5))
axs.tick_params(axis = 'y', which = 'major', labelsize = 12)
color = 'orangered'
line = axs.plot(theta, y, color=color)
axs.fill(theta, y, alpha=0.25, facecolor=color)
axs.set_varlabels(spoke_labels)
plt.show()
def plot_res_bound(gpu_user_join_rm_small_runtime):
sm_max='smutilization_pct_max'
mem_util_max='memoryutilization_pct_max'
mem_size_max='maxgpumemoryused_bytes'
pcie_rx_max='pcierxbandwidth_megabytes_max'
pcie_tx_max='pcietxbandwidth_megabytes_max'
sm_bound=sum(gpu_user_join_rm_small_runtime[sm_max]>=99)/47120*100
mem_util_bound=sum(gpu_user_join_rm_small_runtime[mem_util_max]>=99)/47120*100
mem_size_bound=sum(gpu_user_join_rm_small_runtime[mem_size_max]>=.99*34083962880.0)/47120*100
pcie_rx_bound=sum(gpu_user_join_rm_small_runtime[pcie_rx_max]>=2147*.99)/47120*100
pcie_tx_bound=sum(gpu_user_join_rm_small_runtime[pcie_tx_max]>=2147*.99)/47120*100
plt.rcParams["figure.figsize"] = (4,3)
fig, axs = plt.subplots(1, 1)
axs.grid(color='darkgrey', linestyle=':',axis='y')
bar_names=["SM. Util.","Mem. Util.","Mem. Size","PCIe Rx","PCIe Tx"]
x_pos=np.arange(len(bar_names))
plt.xticks(x_pos,bar_names)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
plt.xticks(rotation = 45);
axs.set_xlabel('Bounded Resource', fontsize=18)
axs.set_ylabel('Jobs (%)',fontsize=18)
plt.bar(x_pos,[sm_bound,mem_util_bound,mem_size_bound,pcie_rx_bound,pcie_tx_bound]);
axs.set_axisbelow(True)
plt.show()
#def plot_double_res_bound(gpu_user_join_rm_small_runtime):
sm_bound_and_mem_util=sum((gpu_user_join_rm_small_runtime[mem_util_max]>=99) & (gpu_user_join_rm_small_runtime[sm_max]>=99))/47120*100
sm_bound_and_mem_size=sum((gpu_user_join_rm_small_runtime[sm_max]>=99) & (gpu_user_join_rm_small_runtime[mem_size_max]>=.99*34083962880.0))/47120*100
sm_bound_and_pcie_rx=sum((gpu_user_join_rm_small_runtime[sm_max]>=99) & (gpu_user_join_rm_small_runtime[pcie_rx_max]>=2147*.99))/47120*100
sm_bound_and_pcie_tx=sum((gpu_user_join_rm_small_runtime[sm_max]>=99) & (gpu_user_join_rm_small_runtime[pcie_tx_max]>=2147*.99))/47120*100
mem_util_and_mem_size=sum((gpu_user_join_rm_small_runtime[mem_util_max]>=99) & (gpu_user_join_rm_small_runtime[mem_size_max]>=.99*34083962880.0))/47120*100
mem_util_and_pcie_rx=sum((gpu_user_join_rm_small_runtime[mem_util_max]>=99) & (gpu_user_join_rm_small_runtime[pcie_rx_max]>=2147*.99))/47120*100
mem_util_and_pcie_tx=sum((gpu_user_join_rm_small_runtime[mem_util_max]>=99) & (gpu_user_join_rm_small_runtime[pcie_tx_max]>=2147*.99))/47120*100
mem_size_and_pcie_rx=sum((gpu_user_join_rm_small_runtime[mem_size_max]>=.99*34083962880.0) & (gpu_user_join_rm_small_runtime[pcie_rx_max]>=2147*.99))/47120*100
mem_size_and_pcie_tx=sum((gpu_user_join_rm_small_runtime[mem_size_max]>=.99*34083962880.0) & (gpu_user_join_rm_small_runtime[pcie_tx_max]>=2147*.99))/47120*100
pcie_rx_and_pcie_tx=sum((gpu_user_join_rm_small_runtime[pcie_rx_max]>=2147*.99) & (gpu_user_join_rm_small_runtime[pcie_tx_max]>=2147*.99))/47120*100
plt.rcParams["figure.figsize"] = (4,4)
fig, axs = plt.subplots(1, 1)
H = np.array([
[sm_bound,sm_bound_and_mem_util,sm_bound_and_mem_size,sm_bound_and_pcie_rx,sm_bound_and_pcie_tx],
[sm_bound_and_mem_util,mem_util_bound,mem_util_and_mem_size,mem_util_and_pcie_rx,mem_util_and_pcie_tx],
[sm_bound_and_mem_size,mem_util_and_mem_size,mem_size_bound,mem_size_and_pcie_rx,mem_size_and_pcie_tx],
[sm_bound_and_pcie_rx,mem_util_and_pcie_rx,mem_size_and_pcie_rx,pcie_rx_bound,pcie_rx_and_pcie_tx],
[sm_bound_and_pcie_tx,mem_util_and_pcie_tx,mem_size_and_pcie_tx,pcie_rx_and_pcie_tx,pcie_tx_bound]])
x_start = 0
x_end = 4
y_start = 0
y_end = 4
extent = [x_start, x_end, y_start, y_end]
plt.xticks(x_pos,bar_names)
plt.yticks(x_pos,bar_names)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15);
plt.xticks(rotation = 45);
size = 5
# Add the text
jump_x = (x_end - x_start) / (2.0 * size)
jump_y = (y_end - y_start) / (2.0 * size)
x_positions = np.linspace(start=x_start, stop=x_end, num=size, endpoint=True)
y_positions = np.linspace(start=y_start, stop=y_end, num=size, endpoint=True)
for y_index, y in enumerate(y_positions):
for x_index, x in enumerate(x_positions):
label = round(H[y_index, x_index],1)
text_x = x + jump_x-0.37
text_y = y + jump_y-0.37
axs.text(text_x, text_y, label, color='black', ha='center', va='center')
axs.set_title('Jobs (%)', fontdict={'fontsize': 18},pad=10)
pos=axs.imshow(H, interpolation='none',cmap='cool')
fig.colorbar(pos, ax=axs)
plt.show()
def find(series1):
ans=[]
current_len=0 #current_len acts like prev_zero_flag flag
for val in series1:
if val<1:
current_len+=1
elif val>=1 and current_len!=0:
ans.append(current_len)
current_len=0
if current_len!=0:
ans.append(current_len)
return ans
def find_active(series1):
ans=[]
current_len=0 #current_len acts like prev_zero_flag flag
for val in series1:
if val>=1:
current_len+=1
elif val==0 and current_len!=0:
ans.append(current_len)
current_len=0
if current_len!=0:
ans.append(current_len)
return ans
def find_all(series1):
ans=[]
current_len_idle=0 #current_len acts like prev_zero_flag flag
current_len_active=0
for val in series1:
if val>=1:
current_len_active+=1
if current_len_idle!=0:
ans.append(current_len_idle)
current_len_idle=0
if val==0:
current_len_idle+=1
if current_len_active!=0:
ans.append(current_len_active)
current_len_active=0
if current_len_idle!=0:
ans.append(current_len_idle)
if current_len_active!=0:
ans.append(current_len_active)
return ans