forked from zhuohan123/terapipe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathterapipe_latency_model.py
225 lines (188 loc) · 8.8 KB
/
terapipe_latency_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import argparse
import gc
import json
import os
import time
import numpy as np
import torch
import tqdm
from test_transformer_terapipe import NCCLTransformer
from transformer_models import TransformerConfig, MODEL_CONFIGS, BATCH_CONFIGS
from latency_model import SCAN_GRID, STEP_GAP
from utils import uniform_slice
class TerapipeLatencyModel(NCCLTransformer):
def step(self, attn_cache_len):
all_inputs = self.create_inputs()
torch.cuda.synchronize()
# forward
start = time.time()
all_outputs, all_cache_inputs, all_cache_outputs = self.forward_step(all_inputs, attn_cache_len)
py_forward_time = time.time() - start
torch.cuda.synchronize()
forward_time = time.time() - start
sliced_grad_x = self.prepare_grad_x(all_outputs)
# backward
start = time.time()
self.backward_step(sliced_grad_x, all_inputs, all_outputs, all_cache_inputs, all_cache_outputs)
py_backward_time = time.time() - start
torch.cuda.synchronize()
backward_time = time.time() - start
del sliced_grad_x
del all_inputs
del all_outputs
del all_cache_inputs
del all_cache_outputs
# if self.data_parallel_size > 1:
# # data parallel allreduce
# self.allreduce_params()
start = time.time()
self.update_weights()
torch.cuda.synchronize()
update_time = time.time() - start
return py_forward_time, forward_time, py_backward_time, backward_time, update_time
def _create_slices(self, x, requires_grad):
# This function will be overrided by other classes. Do not delete it.
inputs = np.empty((1, 1), dtype='O')
inputs[0, 0] = x.requires_grad_(requires_grad)
return inputs
def run(self, batch_size, seqlen, attn_cache_len, n_steps, warmup_steps):
gc.collect()
# overwrite the original slices
self.config.batch_size = batch_size
self.config.seq_len = seqlen
self.batch_slices = [batch_size]
self.input_slices = [seqlen]
py_forward_durations = []
forward_durations = []
py_backward_durations = []
backward_durations = []
update_durations = []
for _ in range(n_steps + warmup_steps):
py_forward_time, forward_time, py_backward_time, backward_time, update_time = \
self.step(attn_cache_len)
py_forward_durations.append(py_forward_time)
forward_durations.append(forward_time)
py_backward_durations.append(py_backward_time)
backward_durations.append(backward_time)
update_durations.append(update_time)
py_forward_durations = py_forward_durations[warmup_steps:]
forward_durations = forward_durations[warmup_steps:]
py_backward_durations = py_backward_durations[warmup_steps:]
backward_durations = backward_durations[warmup_steps:]
update_durations = update_durations[warmup_steps:]
return {
'py_forward_mean': np.mean(py_forward_durations),
'forward_mean': np.mean(forward_durations),
'py_backward_mean': np.mean(py_backward_durations),
'backward_mean': np.mean(backward_durations),
'update_mean': np.mean(update_durations),
'py_forward_std': np.std(py_forward_durations),
'forward_std': np.std(forward_durations),
'py_backward_std': np.std(py_backward_durations),
'backward_std': np.std(backward_durations),
'update_std': np.std(update_durations),
}
def parse_json(r):
results = {}
for k, v in r.items():
key = tuple(map(int, k.split('_')))
results[key] = v
return results
def format_json(r):
results = {}
for k, v in r.items():
key = '_'.join(map(str, k))
results[key] = v
return results
def main():
parser = argparse.ArgumentParser(description='Pipeline + Megatron-LM')
parser.add_argument('ip_address', type=str, help='the IP address of the head node')
parser.add_argument('--port', type=int, help='the port of the head node')
parser.add_argument('--rank', metavar='I', type=int, default=0)
parser.add_argument('--local-rank', metavar='I', type=int, default=0)
parser.add_argument('--world-size', metavar='N', type=int, default=1)
parser.add_argument('--model', metavar='NAME', type=str, default=None,
choices=list(MODEL_CONFIGS.keys()))
parser.add_argument('--model-parallel-size', metavar='N', type=int, default=8)
parser.add_argument('--batch-size', metavar='N', type=int, default=1)
parser.add_argument('--n-steps', metavar='N', type=int, default=10)
parser.add_argument('--warmup-steps', metavar='N', type=int, default=5)
parser.add_argument('--mixed-precision', action='store_true', default=False)
parser.add_argument('--use-mpi', action='store_true', default=False)
# These are fixed during the measurement.
parser.add_argument('--n-batch-slices', metavar='N', type=int, default=1)
parser.add_argument('--n-input-slices', metavar='N', type=int, default=1)
parser.add_argument('--pipeline-parallel-size', metavar='N', type=int, default=1)
parser.add_argument('--sort-function', type=int, required=True)
args = parser.parse_args()
if args.use_mpi:
args.world_size = int(os.getenv('OMPI_COMM_WORLD_SIZE'))
args.rank = int(os.getenv('OMPI_COMM_WORLD_RANK'))
args.local_rank = int(os.getenv('OMPI_COMM_WORLD_LOCAL_RANK'))
config = TransformerConfig.from_predefined_model(
args.model, n_devices=args.world_size, batch_size=args.batch_size)
# We just test a single layer, since all of them are identical.
config.n_layers = 1
data_parallel_size = 1
distributed_init_method = f'tcp://{args.ip_address}:{args.port}'
full_seqlen = config.seq_len
full_batch_size = args.batch_size
# these slices are just placeholders to comfort the model
batch_slices = uniform_slice(full_batch_size, args.n_batch_slices)
input_slices = uniform_slice(full_seqlen, args.n_input_slices)
runner = TerapipeLatencyModel(
config, batch_slices, input_slices, distributed_init_method, args.world_size,
data_parallel_size, args.model_parallel_size, args.pipeline_parallel_size,
args.rank, args.local_rank, mixed_precision=args.mixed_precision,
use_mpi=args.use_mpi, init_process_group=True,
)
inputs = []
filename = f'performance_model_data/latency_model.{args.model}.mp_{args.model_parallel_size}.json'
if os.path.exists(filename):
with open(filename, 'r') as f:
results = parse_json(json.load(f))
else:
results = {}
if args.rank == 0:
print(f"\n==========> model={args.model}, batch_size={args.batch_size}, seqlen={config.seq_len}\n")
# generate context length data points
if full_batch_size > 8:
batch_size_range = range(full_batch_size // SCAN_GRID[2], full_batch_size + 1, full_batch_size // SCAN_GRID[2])
else:
batch_size_range = range(1, full_batch_size + 1)
for batch_size in batch_size_range:
for seqlen in range(full_seqlen // SCAN_GRID[0], full_seqlen + 1, full_seqlen // SCAN_GRID[0]):
for attn_cache_len in range(full_seqlen // SCAN_GRID[1], full_seqlen + 1, full_seqlen // SCAN_GRID[1]):
inputs.append((batch_size, seqlen, attn_cache_len))
# generate no context length data points
for batch_size in range(1, full_batch_size + 1):
for seqlen in range(STEP_GAP, full_seqlen + 1, STEP_GAP):
inputs.append((batch_size, seqlen, 0))
# filter out existing results
inputs = [x for x in inputs if x not in results]
# sort with heuristics, so we only get OOMs at the end
sort_functions = [
lambda x: x[0] * x[1] * (x[1] + x[2]),
lambda x: x[0] * x[1] * x[1],
lambda x: x[0] * x[1] * x[2],
]
inputs.sort(key=sort_functions[args.sort_function])
for i, x in enumerate(tqdm.tqdm(inputs)):
try:
batch_size, seqlen, attn_cache_len = x
results[x] = runner.run(batch_size, seqlen, attn_cache_len, args.n_steps, args.warmup_steps)
if args.rank == 0 and (i + 1) % 100 == 0:
with open(filename, 'w') as f:
json.dump(format_json(results), f, indent=4)
except RuntimeError as e:
batch_size, seqlen, attn_cache_len = x
print(f"OOMed with batch_size={batch_size}, seqlen={seqlen}, attn_cache_len={attn_cache_len}.")
if args.rank == 0:
with open(filename, 'w') as f:
json.dump(format_json(results), f, indent=4)
raise e
if args.rank == 0:
with open(filename, 'w') as f:
json.dump(format_json(results), f, indent=4)
if __name__ == "__main__":
main()