

 [Date]

Autonomous Grabbing with RGB-D
Integrated into the BrikieBot Project- A New Concept
of a Robotic Bricklayer

Manar MAHMALJI

Master thesis submitted under the supervision of
 ir. Michele AMBROSINO & dr. Emanuele GARONE
The co-supervision of
dr. Mehrdad TERATANI
In order to be awarded the Master’s Degree in
electro-mechanical engineering- Module Robotics and
Mechatronics - Construction

Academic year
2021-2022

* Biffer la mention inutile * Biffer la mention inutileFo
rm

ul
ai

re
 v

er
sio

n
04

/2
01

5

Exemplaire à apposer sur le mémoire ou travail de fin
d’études,

au verso de la première page de couverture.

Réservé au secrétariat : Mémoire réussi* OUI
NON

CONSULTATION DU MEMOIRE/TRAVAIL DE FIN
D’ETUDES

Je soussigné

NOM :
……………………………………………………………………………………
………………………

PRENOM :
……………………………………………………………………………………
………………..

TITRE du travail :
……………………………………………………………………………………
………

……………………………………………………………………………………
…………………………………

AUTORISE*

REFUSE*

la consultation du présent mémoire/travail de fin
d’études par les utilisateurs des bibliothèques de

l’Université libre de Bruxelles.

Si la consultation est autorisée, le soussigné concède
par la présente à l’Université libre de Bruxelles, pour
toute la durée légale de protection de l’œuvre, une
licence gratuite et non exclusive de reproduction et de
communication au public de son œuvre précisée ci-
dessus, sur supports graphiques ou électroniques, afin
d’en permettre la consultation par les utilisateurs des
bibliothèques de l’ULB et d’autres institutions dans les
limites du prêt inter-bibliothèques.

Fait en deux exemplaires, Bruxelles, le …………..
Signature

3-06-2022

MAHMALJI

MANAR

Autonomous Grabbing with RGB-D

Integrated into the BrikieBot Project- A new concept
of a Robotic Bricklayer

manar
Cross-Out

* Biffer la mention inutile * Biffer la mention inutileFo
rm

ul
ai

re
 v

er
sio

n
04

/2
01

5

Exemplaire destiné à l’étudiant.

Réservé au secrétariat : Mémoire réussi* OUI
NON

CONSULTATION DU MEMOIRE/TRAVAIL DE FIN
D’ETUDES

Je soussigné

NOM :
……………………………………………………………………………………
………………………

PRENOM :
……………………………………………………………………………………
………………..

TITRE du travail :
……………………………………………………………………………………
………

……………………………………………………………………………………
…………………………………

AUTORISE*

REFUSE*

la consultation du présent mémoire/travail de fin
d’études par les utilisateurs des bibliothèques de

l’Université libre de Bruxelles.

Si la consultation est autorisée, le soussigné concède
par la présente à l’Université libre de Bruxelles, pour
toute la durée légale de protection de l’œuvre, une
licence gratuite et non exclusive de reproduction et de
communication au public de son œuvre précisée ci-
dessus, sur supports graphiques ou électroniques, afin
d’en permettre la consultation par les utilisateurs des
bibliothèques de l’ULB et d’autres institutions dans les
limites du prêt inter-bibliothèques.

Fait en deux exemplaires, Bruxelles, le …………..
Signature

Autonomous Grabbing with RGB-D
Integrated into the BrikieBot Project- A new concept
of a Robotic Bricklayer

MAHMALJI

MANAR

3-06-2022

manar
Cross-Out

Acknowledgments

I would like first to express my utmost appreciation for Michele Ambrosino for his unwa-

vering support throughout all the academic year. Not only is he a great engineer to work

with, but also a great person to know. Furthermore, I wish to extend my gratitude to the

promoters: professors Emanuele Garone and Mehrdad Teratani for accepting me into this

project, and for their valuable feedback all the time. I would also like to thank all the SAAS

laboratory staff for providing different kinds of technical support.

1

Contents

1 Introduction 9

1.1 Scope of Study . 10

1.2 Outline . 11

1.3 State-of-the-Art . 12

1.4 Goal Statement . 17

2 Used Equipment 19

2.1 RGB-D Camera . 19

2.2 Robotic Arm . 26

2.3 Software . 26

3 Object Detection and Pose Estimation 27

3.1 Proposed Algorithm for Object Detection 27

3.2 About ArUco Markers . 28

3.3 Rotation Matrices and Homogenous Transformations 31

3.4 Pose Estimation of Block . 33

4 Eye-to-Hand Calibration 37

4.1 Theoretical Framework . 37

4.2 Calibration Setup . 38

4.3 Convergence . 40

4.4 Validation of Results . 41

4.5 GitHub Repository . 44

5 Grabbing Experiments 46

5.1 Static Block . 46

5.2 Oscillating Suspended Block . 48

2

5.3 Camera and Robot in ROS . 51

6 Pose Tracking 53

7 Future Work and Conclusion 55

7.1 Future Work . 55

7.2 Conclusion . 57

Bibliography 59

8 Annex 61

8.1 Additional Setup for Intel Realsense D455 61

8.2 ArUco Board Creation in PDF on Ubuntu 20.04 63

8.3 Pose Estimation Validation with OptiTrack 64

8.4 ArUco Board Eye-to-hand Calibration Convergence study 66

3

List of Figures

1.1 BrikieBot: Proposed Scheme for the Robotic Bricklayer, where (1) is the crane,

(2) the aerial work platform, (3) is the robotic arm, (4) is the block to be placed,

and (5) is the existing wall . 10

1.2 Real construction process BrikieBot aims to mimic, source: Jacques Delens,

BESIX Group . 11

1.3 Different Commerical Products of Vision-Guided Robotics. (a) KUKA Vision-

tech with Cognex VisionPro [3], (b) Pickit L 3D camera, bin picking[15], (c)

Zivid Two 3D camera, bin picking[24] . 13

1.4 (a) 5DOF robotic arm using a D435 stereo camera to detect and extract a wall

with obstacles using a model-based method, RANSAC. The robot is then able

to paint the extracted wall (b) Extracted wall from RANSAC. The area in red are

obstacles and the area in green is to be painted 14

1.5 (a) A partially filled roller-container with common goods (b) The developed

pipeline uses a region-growing algorithm to compute a new placement for a

new load, where good surfaces are clustered in different colours. 15

1.6 A robot trajectory teaching system with a vision-based positioning pen is de-

veloped to generate pose paths of six degrees of freedom (6-DoF) for vision-

guided robotics applications such as welding, cutting, painting, or polishing...etc 16

1.7 (a) FORPHEUS: First Table Tennis Robot Tutor developed by Omron (b) High-

speed stereo cameras that tRack the ball’s motion (c) 6-axis robotic arm that

allows skillful strokes. Source: Omron . 16

1.8 The In-situ Fabricator robot’s arm is equipped with a laser range finder that

generates a 3D map of its surroundings. The map enables the robot to localize

itself as well as verify the construction with its CAD [11] 17

4

2.1 Different depth perception methods(a)Structured or Coded Light(b) Stereo Depth

(c) Time of Flight and LiDAR, Source: Intel Realsense 21

2.2 Different outputs for Intel Realsenes D455 (a) Color frame: 2D grid of RGB pix-

els(b) Depth map: a color frame where each pixel has its values based on depth

(c) Point cloud: a set of 3D coordinates w.r.t the camera frame 25

2.3 Intel Realsense D455 Frames, Red, Green, and Blue for X, Y, and Z, respectively 25

2.4 (a)Kuka LBR IIWA14 R820 Robotic arm (b) Technical data (c) Pneumatic grip-

per with parallel fingers . 26

3.1 ArUco Detection and Pose Estimation (a) 6x6 ArUco Marker (b) Raw Image

with ArUco Markers of different IDs (c) Image after Adaptive thresholding fin-

gers (d) Marker candidate after perspective transformation (e) Marker cells

to know the ID of marker (f) ArUco Marker frame in image frame (g) Marker

frames in 3D w.r.t. camera frame drawn after pose estimation 30

3.2 (a) ArUco Board (b) ChArUco Board= Chess + ArUco 31

3.3 (a) Two frames in space (b) Two frames having the same origin 32

3.4 Two frames with different origins . 33

3.5 (a) Pose estimation of marker frame from single marker: X for Red, Y for Green

and Z for Blue R. (b) Pose estimation with a 3x2 ArUco Board 34

3.6 (a) The ambiguity problem: the same projection could come from two dif-

ferent cubes: the ones in red and blue (b) Spikes in pitch angle reading from

pose estimation from one ArUco marker compared to the same pose estima-

tion from an ArUco board . 35

3.7 Euler angles readings from pose of ArUco board vs pose of one marker of the

board: board orientation is almost 4 times less fluctuating than a marker’s.

Measurements at 30 Hz, 1 m away from the camera 36

4.1 Eye-to-hand calibration problem: obtain base Tcam where (i) and (j) corre-

spond to different positions of the robotic arm’s gripper 38

4.2 Eye-to-hand Calibration Flowchart . 40

4.3 (a)Camera fixation (b)Initial calibration position: calibration board fully de-

tected by camera (c) Random poses should include different rotations around

3 perpendicular axes (d) Close pose of a board filling image frame 40

5

4.4 Convergence study of eye-to-hand calibration with ChArUco board for the 5

different methods offered by OpenCV. Only the methods of Park and Andreff

show a converging behavior . 41

4.5 Approximate validation of position by aligning the gripper center to the center

of the ArUco marker, then marker center position is measured. Results are in

Table(4.1). 42

4.6 Approximate orientation validation of eye-to-hand calibration (a) gripper edges

are manually aligned with marker edges, then board orientation is measured

(b) Gripper frame drawn from direct kinematics at the robot position in (a).

The board frame must be rotated to be aligned with the gripper frame. Results

are in Table (4.2) . 43

5.1 (a) Desired grabbing of block (b) Applying a homogeneous transformation to

obtain the block frame at a desired grabbing position 47

5.2 Gripper is first asked to go to a position vertically shifted up to avoid collision

with block. Then, it descends vertically to the required position 47

5.3 Three grabbing experiments at different board orientations. The robotic arm

in (c) reached a joint limit and could not descend further. The block width is

12 cm and the gripper opening is 15 cm . 48

5.4 Moving standard deviation of window size 3 . 48

5.6 Standard deviations of pose measurements of a static suspended block over a

10(s) interval, 1 m away from the camera . 49

5.7 Using a moving standard deviation with a window size of 20 to determine if a

suspended block is static. Poses in red indicate that the block is static in two

regions, corresponding to the beginning before perturbing the block and the

end after settling down . 50

5.8 Grabbing experiment of an oscillating suspended block after settling down (a)

initial position close under the block (b) intermediate position: alignment with

block frame whilst under the block(c) final grabbing position 51

5.9 Camera-Robot interface in ROS: rqt graph of the related nodes and topics . . . 51

5.10 Software/hardware architecture of the grabbing experiments 52

6

6.1 Different orientations of the block when the robot is asked to follow its grab-

bing pose . 53

7.1 Applying a depth filter based on an ArUco marker placed on a modified clamp

(a) Regular clamp used with real blocks (b) Depth filtering with an ArUco marker

(c) Expected output with point cloud segmentation algorithms like RANSAC . 56

8.1 MOK Prompt . 62

8.2 ArUco board printing on PDF . 64

8.3 Proposed method to align OptiTrack ground frame w.r.t. ChArUco board frame

by putting reflective markers, within red circles, at the corners of the board.

Camera frame can then be transformed to board frame and hence the ground

frame of OptiTrack . 65

8.4 Convergence study of eye-to-hand calibration with ChArUco board for the 5

different methods offered by OpenCV. Only the methods of Park ,Horaud, and

Andreff show a converging behavior . 66

7

Abstract

When robots can see, measure, analyze, and respond to their environment, a whole new

world of possibilities opens up. To bring these possibilities to life, the robotics industry is

increasingly adopting vision-guided robotics. In the construction business, there have been

many prototypes to integrate robotic bricklayers into the industry. However, the majority of

robots are somewhat restricted to specified conditions, which is primarily because they lack

the perception of their environment. Integrating computer vision into a robotic bricklayer

allows it to be more aware of its environment on the worksite and, thus, adds more flexibil-

ity to the achievable tasks. This thesis proposes a vision-guided approach, provided by an

RGB-D camera and ArUco markers, that enables a robotic arm to autonomously perform the

grabbing of a suspended block. A GitHub repository of a set of organizational tools devel-

oped for eye-to-hand calibration with OpenCV in Python is published: link. Furthermore,

the results of this thesis will contribute to a conference paper that will be submitted to the

IEEE International Conference on Robotics and Automation (ICRA) 2023. This thesis is part

of the BrikieBot project, which lays the foundations for a new robotic bricklayer.

Keywords: Vision-guided robotics, RGB-D Camera, ArUco Pose estimation, Eye-to-hand cal-

ibration, Robotic Bricklayer

8

https://github.com/ManarMahmalji/Eye-to-hand-Calibration-with-OpenCV.git

Chapter 1

Introduction

In the demanding workflow of robotics in everyday industries, being resistant towards

exhaustive repetition, chemical effects and other environmental hazards, or higher possi-

ble precision during maneuvering is only a fraction of all the leverage a robot may offer[7].

Robots can indeed become more intelligent by perceiving their environments and inter-

acting with it[9]. And endowing them with such an ability has been a long-standing goal

in computer vision[5]. Computer vision systems provide the robots with the ability to un-

derstand the surrounding environment, to detect objects and to classify them[12]. When

robots can see, measure, analyze, and respond to their environment, a whole new world of

possibilities opens up. To bring these possibilities to life, the robotics industry is increas-

ingly adopting computer vision technology, which allows robots to sense depth, navigate

landscapes, and recognize objects, people, and scenes[13].

In the construction industry, several robotic brick-laying platforms have been proposed

in the course of the recent years [1]. Research on construction robotics started during the

"robot boom" of the 1970s with the development of simple robotic systems that could help

workers in very specific construction tasks (e.g. material manipulators for placing heavy

components, or tele-operated and autonomous machines [20]). However, very few of the

prototypes developed in the 70s, 80s, 90s, and early 2000s have reached the market and

can be considered successes, because most of them adopt the classical assumption of ’rigid

robot’ which results in large weight of the robots w.r.t.1 the loads that they are able to ma-

nipulate and therefore most of them did not pass the prototype stage [8].

1With respect to

9

1.1 Scope of Study

The BrikieBot project proposes a new robotic concept for the bricklaying of large blocks

based on a "non-rigid" robot, such as a crane, in charge of the macro-movement and of

holding most of the weight of the building block, and a small rigid robot mounted on an

aerial work platform to achieve the desired precision during the fine placement of the block.

A schematic of the envisioned solution is reported in Fig. 1.1 where (1) is the crane, (2) the

aerial work platform, (3) is the robotic arm, (4) is the block to be placed, and (5) is the existing

wall.

Figure 1.1: BrikieBot: Proposed Scheme for the Robotic Bricklayer, where (1) is the crane, (2)
the aerial work platform, (3) is the robotic arm, (4) is the block to be placed, and (5) is the
existing wall

This solution can be seen both as a way to mimic the role of masons in a current con-

struction process (see Fig.(1.2), where a flexible arm is in charge of taking most of the weight

of the load, while a rigid arm is mounted in parallel and is used to measure the exact position

of the block and to guide its fine positioning.

The laying activity can be divided into three sub-tasks:

1. to move the block near the desired position with the crane;

2. to grab the hanging block with the robotic manipulator;

3. to control cooperatively the robot and the crane to carry out the fine-positioning on

the wall.

10

Figure 1.2: Real construction process BrikieBot aims to mimic, source: Jacques Delens, BESIX
Group

This study is not intended to explain the different challenges raised in every sub-task, as

they are well-discussed in [10]. Rather, it answers to the challenges of task(2) by proposing

an implementation of computer vision methods with an RGB-D camera to enable a robotic

arm to autonomously perform the grabbing of a suspended block.

1.2 Outline

1. Introduction

After going through a general introduction, and defining the scope of the study, a list of

state-of-the-art technologies for vision-guided robotics is presented. This is followed

by a statement of the study’s goal.

2. Used Equipment

This chapter introduces the different hardware/software used throughout the study,

including the RGB-D camera and the robotic arm.

3. Object Detection and Pose Estimation

This chapter discusses the proposed method for a block’s detection and its pose esti-

mation using ArUco markers.

4. Eye to Hand Calibration

This chapter shows the setup, procedure and validation for the eye-to-hand calibra-

tion, along with the different challenges encountered through implementation.

11

5. Grabbing Experiments

This chapter shows the results of grabbing experiments performed on a suspended

block, as well as the proposed criterion for deciding if a block is static or oscillating.

6. Pose Tracking

This chapter shows the results of tracking the grabbing pose of a moving block.

7. Future Work and Conclusion

This chapter discusses potential future aspects of the achieved work and concludes

the thesis with a summary of its contribution and learning outcomes.

1.3 State-of-the-Art

The technologies involving vision-guided robotics are numerous; nonetheless, this sec-

tion aims to give a sample of some achieved work both in the commercial and research

stages.

1.3.1 Commercial Products

Starting by what is already available on the market, it is a common application of com-

puter vision in industrial processes to be used in the inspection of parts before being picked

by an industrial robot for the next stage of processing. In this case, the camera is fixed at

some point and a robot is ready to pick an item on a planar surface, as seen in Fig.(1.3a). Nor-

mally, the inspections could be dimensional measurements, unusual colours, defect parts,

counting a certain number of items, or even read a code from parts...etc. A world leader

in these systems is Cognex Corporation, an American manufacturer of machine vision sys-

tems, software and sensors used in automated manufacturing. Cognex offers a complete

family of vision products—from standalone vision systems to 2D and 3D vision software—to

give a robot the power of sight. A typical vision system, as seen in Fig.(1.3a), is an industrial

KUKA robot integrated with Cognex VisionPro software. The powerful vision tools locate,

inspect and read codes on stationary or moving parts [3].

12

(a) (b) (c)

Figure 1.3: Different Commerical Products of Vision-Guided Robotics. (a) KUKA Visiontech
with Cognex VisionPro [3], (b) Pickit L 3D camera, bin picking[15], (c) Zivid Two 3D camera,
bin picking[24]

Going further, the Belgian startup Pick-it™, founded in 2012, has taken the quest to

make robot vision easy by developing a product of a 3D camera and accompanying software

that guides the robot to see, pick and place a wide range of products, not necessarily on a flat

place as seen in Fig.(1.3a). The product is suited for various service applications: machine

tending, bin picking, order picking, palletizing, kitting and assembly[15]. An example of a

bin picking process can be seen in Fig.(1.3b), in which the camera is fixed, and it is able to

determine the poses of each of the items in the bin(seen on the top right of the figure) and

communicate them to the robot to pick an item. Standard features of the Pick-it product

include easy bin collision avoidance and tool modeling. The pick frame can be chosen to

adjust the gripper geometry[15]. More importantly, Pick-it™ TEACH makes it possible to

define the product model simply by taking a photo with the Pick-it™ camera[15]. Which

makes it flexible and easy to use for several items during the same working day with seamless

effort.

On the same wavelength as Pick-it is Zivid. The Norwegian startup, founded in 2015, is

also making 3D cameras for similar service applications, but with a very high resolution

and extreme precision native color 3D point clouds with minimal occlusion, and excellent

noise suppression, significantly improving object recognition and increasing the number of

detectable parts[24].In Fig.(1.3c), it can be seen that the camera is mounted on the robot,

which gives it a lot more flexibility than what was seen in Fig.(1.3b). However, it is worth

noting that Pick-it can also mount the camera on the robot. In fact, the two companies

have recently started to collaborate to combine the longer expertise of Pick-it and the more

accurate cameras of Zivid[24].

13

1.3.2 Research Projects

[19] describes a robust and simple computer vision algorithm to detect and extract win-

dows and coarse obstacles on walls using depth images recorded with a 3D camera. The

goal is to allow a robot to paint a wall on its own while evading the obstacles like windows,

paintings...etc.The paint spraying unit is a 5DOF robotic arm and the 3D camera is an Intel

Realsense D435 stereo camera. The scheme is shown in Fig.(1.4a). The project deals with

plane detection and segmentation, a famous problem in computer vision, using a random

sample consensus model (RANSAC), which is an iterative method for estimating a mathe-

matical model from a data set that contains outliers[19]. In this case, a wall is a huge set of

points in the same plane, and RANSAC iteratively classifies all the points away from the wall

by a certain threshold as outliers. The final result of the extracted wall is shown in Fig.(1.4b).

However, the main disadvantage of this algorithm is that there is no upper limit on the num-

ber of iterations it takes to find the plane, and a higher number of iterations increases the

probability of a reasonable model being produced is increased. Hence, there is a trade-off

in performance. Furthermore, the algorithm assumes the wall is the greatest planar object

in the image and the obstacles are always parallel to the wall.

(a) (b)

Figure 1.4: (a) 5DOF robotic arm using a D435 stereo camera to detect and extract a wall
with obstacles using a model-based method, RANSAC. The robot is then able to paint the
extracted wall (b) Extracted wall from RANSAC. The area in red are obstacles and the area in
green is to be painted

A similar work is done in [2] in terms of plane segmentation. [2] develops a pipeline for

extracting horizontal contact surfaces from point-cloud data, also from an Intel Realsense

D435 stereo camera, for autonomous placing of rigid objects. It basically indicates a hori-

zontal surface for a robot to place a certain load in a roller-container, as shown in Fig.(1.5a),

14

where the camera is fixed on top of the container. The proposed pipeline uses a region-

growing algorithm, tailored for horizontal surfaces extraction, to determine good surfaces

for placing, as shown in Fig.(1.5b). A a region-growing clustering algorithm means that a

neighborhood of point is admitted to a cluster if they fulfill some proximity condition[2].

Finally, it compares the results with an off-the-shelf RANSAC implementation.

(a) (b)

Figure 1.5: (a) A partially filled roller-container with common goods (b) The developed
pipeline uses a region-growing algorithm to compute a new placement for a new load, where
good surfaces are clustered in different colours.

[9] is a very interesting study which describes a method to allow for a more natural human-

robot interaction by developing a trajectory vision-based teaching system with a vision-

based positioning, called Solpen. It generates pose paths of six degrees of freedom (6-DoF)

for robotics applications such as welding, cutting, painting, or polishing. The system is con-

sists of fixed 2D camera, a 5 DOF robotic arm and the printed ArUco markers which are

hand-glued on 31 surfaces of the designed 3D-printed Solpen. The described scheme is

shown in Fig.(1.6). ArUco markers are very common in the world of vision-guided robotics,

and they will be more explained in chapter 3. Within a 1-meter working range, the average

errors of for 3 different trajectories with Solpen are 2.79 mm, 1.09 mm, and 1.44 mm for X, Y,

and Z axis, respectively. For rotation, the error is slightly higher than 0.1 deg.

15

Figure 1.6: A robot trajectory teaching system with a vision-based positioning pen is devel-
oped to generate pose paths of six degrees of freedom (6-DoF) for vision-guided robotics
applications such as welding, cutting, painting, or polishing...etc

Speaking of teaching, it is not uncommon to hear about humans teaching robots, but not

the other way around. Developed by Omron Corporation, FORPHEUS, seen in Fig.(1.7a),

holds the Guinness record for the first table tennis robot teacher[17]. The robot’s sensing

module is composed of a high-speed stereo camera, seen in Fig.(1.7b), that measures the

ball’s movement at 80 frames per second, two motion sensors for tracking the player’s move-

ment, and another high-speed camera for tracking the racket’s movement[14]. Furthermore,

the robot has a 6-axis arm, seen in Fig.(1.7c), enabling it to perform a wide combination of

skillful strokes in the way that a human player does[14]. Using AI, FORPHEUS can then

predict the trajectory of the ball and hit the ball back, and learns about the player’s charac-

teristics over time to help him make progress[17]. Unfortunately, it is not yet available for

sale, and is mainly presented in technology expos[17].

(a) (b) (c)

Figure 1.7: (a) FORPHEUS: First Table Tennis Robot Tutor developed by Omron (b) High-
speed stereo cameras that tRack the ball’s motion (c) 6-axis robotic arm that allows skillful
strokes. Source: Omron

16

For what concerns robotic bricklayers, some of them use 3D-scanning technologies to

navigate through their environment and perform the picking and placing of bricks. A good

example is the In-situ Fabricator, shown in Fig.(1.8). It is currently still under development at

The National Centre of Competence in Research (NCCR) Digital Fabrication[11]. The robot’s

arm is equipped with an ABB IRB 4600 robotic arm with 2.55 m reach and 40 kg payload. IF

can achieve a maximum driving speed of 5 km/h on non-flat or soft grounds[11]. It is also

equipped with a laser range finder that generates a 3D map of its surroundings every time

the robot sweeps its arm. This map is compared to previous scans in order to calculate the

robot’s relative position. This scanning feedback loop is also used to compare the existing

state of construction to the CAD model of the desired structure, and the control system of

IF is able to determine any small deviations from design and make adaptions within the

construction process [11].

Figure 1.8: The In-situ Fabricator robot’s arm is equipped with a laser range finder that gen-
erates a 3D map of its surroundings. The map enables the robot to localize itself as well as
verify the construction with its CAD [11]

1.4 Goal Statement

This study aims to use an RGB-D camera to enable a robotic arm to perform the grabbing

of a suspended block. The workflow can be divided into the following tasks:

1. Choose the RGB-D camera and be familiarized with its available functions

2. Find a proper way to identify the pose of a block with respect to the camera frame

3. Get and validate the transformation matrix from camera frame to robot base frame(

Eye-to-hand calibration), and develop an interface for making this process easily re-

peatable.

4. Integrate the camera data into the ROS pipeline of the robotic arm

17

5. Test the pipeline for static and dynamic grabbing of a suspended block

6. Propose an approach for dynamic tracking of a moving block

18

Chapter 2

Used Equipment

This chapter introduces the different hardware/software used throughout the study, in-

cluding the RGB-D camera and the robotic arm.

2.1 RGB-D Camera

2.1.1 RGB-D Principle

A normal image taken from a standard camera is a 2D grid of pixels where each pixel is

a set of 3 values, which are usually thought of as Red, Green and Blue, or RGB. Each value

ranges from 0 to 255, so black, for example, is (0,0,0) and a pure bright red would be (255,0,0).

On the other hand, a depth camera outputs pixels with only one numerical value associated

with them, that is the distance from the camera or the "depth". Some depth cameras have

both an RGB and a depth system, which can give pixels with all four values, or RGBD, and

hence comes the name RGB-D camera. In order to understand which RGB-D camera to

choose, it is imperative to understand the methods for depth perception, as each has its

own advantages and disadvantages depending on the application. According to [16], there

exist three main types of methods:

1. Structured Light and Coded Light

Coded light and structured light depth cameras use similar technologies. They de-

pend on projecting light from some kind of emitter, most often an infrared one, onto

the scene. The projected(emitted) light is patterned, either visually or over time, or a

combination of both. Patterns deform in a certain way on different geometries and

hence, the camera sensor estimates depth by comparing the projected pattern to the

19

deformed one[16]. Using the disparity between an expected image and the actual

image viewed by the camera, distance from the camera can be calculated for every

pixel[4]. An example is shown in Fig.(2.1a). If the projected pattern is a series of stripes

projected onto a ball, the stripes would deform and bend around the surface of the ball

in a specific way. The pattern also changes if the ball moves closer to or away from the

emitter. Because this technology depends chiefly on how accurate projected pattern

of light is seen, coded and structured light cameras do best indoors at relatively short

ranges (depending on the power of the light emitted from the camera) [16]. Another

issue with systems like this is that they are vulnerable to other noise in the environ-

ment from other cameras or devices emitting infrared[4]. Ideal uses for coded light

cameras are things like gesture recognition or background segmentation (also known

as virtual green screen)[16].

2. Stereo Depth

In the same way the human brain perceives depth, stereo cameras use two eyes(two

cameras) for depth perception. The brain compares what every eye sees to realize

how far an object is, and that is why objects closer to us will appear to move signif-

icantly from eye to eye, where an object in the far distance would appear to move

very little[16]. As seen in Fig.(2.1b), stereo depth cameras have two sensors, spaced

a small distance apart, and a processor computes the disparity between the images

of the two sensors and as the sensor-to-sensor distance (baseline) is known, depth is

calculated[4]. Unlike coded or structured light cameras, stereo cameras can use any

light to measure depth, which enables them to work well in most lighting conditions,

including outdoors[16]. Another benefit of stereo cameras is that they don’t interfere

with each other in the same way that a coded light or time of flight camera would,

and hence there is no limit to how many you can use in a particular space[4]. Fur-

thermore, the distance these cameras can measure is directly related to how far apart

the two sensors are – the wider the baseline is, the further the camera can see[16].

On the other side, one disadvantage of stereo depth is that it relies on finding corre-

spondences between two images to extract depth, which is easier if the scene in the

field of view as a highly varied texture[2]. This means degraded performance for a

low-textured image. For example, walls or floors.

20

3. Time of Flight and LiDAR

Every type of depth cameras depends on a known information in order to calculate

depth. In coded light and structured light, the projected pattern of light is known.

In stereo, the baseline is known. In case of time of flight, the speed of light is the

known variable used to calculate depth. As shown in Fig.(2.1c), in any time of flight

device, there is some kind of light emitter that is swept over a scene, and then based

on how long it takes light to get back to a sensor on the camera, it calculates depth[4].

LiDAR sensors are a type of time of flight camera which use laser light to calculate

depth[16]. Depending on the power and wavelength of the light, time of flight sensors

can measure accurate depth at significant distances – for example, being used to map

terrains from a helicopter[16]. The main drawback of time of flight cameras is that

they can, similar to structured light and coded light cameras, be vulnerable to other

cameras, or other sources of light like sunlight, in the same space and can also perform

less well in outdoor environments[4]. Furthermore, they are more expensive than the

previously mentioned types.

(a) (b) (c)

Figure 2.1: Different depth perception methods(a)Structured or Coded Light(b) Stereo
Depth (c) Time of Flight and LiDAR, Source: Intel Realsense

The following table summarizes the advantages and disadvantages for each type of

depth camera:

21

Advantages Disadvantages

Structured Light and Coded Light
suitable for low range

and indoor use

influenced by other cameras or

devices emitting infrared

Stereo Depth
work well in most lighting

conditions, can be long range

less performance for low-textured

images and dark environments

Time of Flight and LiDAR

very accurate , could be very

long range applications.

Can work in darkness

influenced by other cameras or

other sources of light , expensive

Table 2.1: A summary of the advantages and disadvantages of the different depth cameras

2.1.2 Camera Selection

The first criterion for camera selection is that it should be able to operate outdoors, as in

a construction site. The second is that it should have a wild field of view (FOV) so that it can

detect as much information as possible from one place. And finally, the working range is

1-5 meters. The first criteria immediately rules out the structured light and coded light, and

time of flight cameras as they are both not suited for outdoor use. For what concerns stereo

cameras, this study does not aim to do a comprehensive study of the all the stereo cameras

in the market, rather choose the best off-the-shelf product suited for vision-guided robotics.

To the best of the author’s knowledge, the most common stereo cameras are the ZED series

by Stereolabs and D400 series by Intel Realsense. A comparison of the most important specs

between the latest models of the two series, ZED2i and D455, is shown in Table 2.2. ZED2i

has more than triple the range of D455, a better RGB and depth resolution and is equipped

with more sensors. It is more suited for 3D mapping of its environment and for AI applica-

tions like skeleton tracking thanks to the use of neural networks. Furthermore, it has an IP66

protection rating for water and dust resistance, which D455 does not have. However, there

is not much difference in accuracy under 6 m and D455 has an IR projector. As explained

in the previous section, the key feature that enables the stereo camera to retrieve the depth

of each pixel is finding correspondences between the two pictures, which is problematic for

poorly textured surfaces. To overcome this, the IR projector projects random light pattern on

the scene, enriching it with more identifiable key-points that help to find correspondences

in the poorly textured surfaces. This feature could be helpful for a low-textured object like

the block shown in Fig.(1.2). Last but not least, according to the different projects seen in

vision -guided robotics whilst writing the state-of-the-art, the lower cost of the D455 made

22

it a more favorable choice for a lot of research projects allowing for more online material

available for it than for the ZED series in general. In the end, although the ZED2i is more

suitable and offers better performance, the D455 was chosen because of the great shipping

delay of ZED2i.

23

Feature D455 ZED2i 2.1 mm1

Use Environment Indoor & Outdoor

Indoor & Outdoor

Has an IP66 rating for water

and dust resistance

Baseline 9.5 cm 12 cm

Technology Active IR2 stereo Neural stereo depth sensing

Resolution Up to 1280 x 720 Up to 2208 x 1242

FPS3 Up to 90 fps Up to 100 fps

FoV (H x V)4 87° x 58° 110°x 70°

Range .6 m to 6 m .2 m to 20 m
Depth

Accuracy <2% at 4 m
<1% at 3 m

<5% at 15 m

Resolution Up to 1280 x 800 Up to 2208 x 1242

FPS Up to 30 fps Up to 100 fpsRGB

FoV (H × V) 90 × 65° 110° x 70°

Sensors Accelerometer, gyroscope

Accelerometer, gyroscope

magnetometer, barometer

temperature

Special Features IR projector

Skeleton Tracking

Object detection

Spatial mapping

Price5 399 $ 499 $ 6

12.1 mm is the focal length, there is also an option with 4 mm for increased resolution and depth accuracy
at longer range

2Infra Red
3Frame Per Second
4FoV: Field of View(Horizontal x Vertical)
5The prices are according to the official website without the costs of shipping
6The price jumps to 549 $ for 4 mm focal length

Table 2.2: Comparative study between the stereo cameras D455 by Intel Realsense and
ZED2i by Stereolabs

24

2.1.3 Camera Data

The camera output can be viewed directly from its SDK in three formats, as shown in

Fig.(2.2). The higher fps offered by the camera are at the expense of lower quality.

(a) (b) (c)

Figure 2.2: Different outputs for Intel Realsenes D455 (a) Color frame: 2D grid of RGB pix-
els(b) Depth map: a color frame where each pixel has its values based on depth (c) Point
cloud: a set of 3D coordinates w.r.t the camera frame

Figure 2.3: Intel Realsense D455 Frames, Red, Green, and Blue for X, Y, and Z, respectively

The different outputs can also be accessed through the famous computer vision library

OpenCV. From any pixel given in Fig.(2.2a), depth can be retrieved w.r.t. RGB frame1, hereby

referred to as camera frame throughout the study. Depth is nothing but the z coordinate

w.r.t. camera frame. Furthermore, for each pixel, the 3D coordinates of the associated point

in 3D space can be retrieved as well. In section 8.1 of the Annex, practical hints about the

camera setup and the use of its tools are present.

1Depth is always retrieved w.r.t. depth frame shown in Fig(2.3). For that, the depth reading should always
be aligned with the RGB frame using the dedicated sample code from Intel Realsense

25

2.2 Robotic Arm

The robotic arm is a Kuka LBR IIWA14 R820, for which, the important specs are given in

Table 2.4b. The arm has a pneumatic parallel gripper, as shown in Fig.(2.4c), with a max-min

opening: 12-16 cm.

(a) (b) (c)

Figure 2.4: (a)Kuka LBR IIWA14 R820 Robotic arm (b) Technical data (c) Pneumatic gripper
with parallel fingers

2.3 Software

All the development of this study was done using the following software versions:

• operating system: Ubuntu 20.04.4 LTS

• OpenCV2: version 4.5.5

• Python: version 3.8.10

• ROS3 Noetic

• FRI4 library 1.17

2Tip: OpenCV is inherently installed with ROS
3Robot Operating System
4Fast Research Interface: library used for Kuka robot control

26

Chapter 3

Object Detection and Pose Estimation

This chapter discusses the proposed method used for a block’s detection and its pose es-

timation.

3.1 Proposed Algorithm for Object Detection

The real challenge about any vision-guided robotic system is to be able to extract the ob-

ject of interest out of the image frame. However, detection is not enough because the final

goal is to estimate the position and orientation of a block. Detection of an object from a

2D image can be done in several ways. One way to go is using a machine learning model

trained with a large image data set of the object, and this is what famous libraries like Ten-

sorFlow are used for. Such models usually draw a bounding box around the detected object.

However, in many vision-guided robotic applications, a development of such big data sets

is troublesome, costly and time-consuming [13]. Another way would be using some im-

age processing like binary thresholding, blurring, contour detection, polygon fitting...etc, to

extract objects with certain features: like color, shape, repeating patterns, markers like QR

codes, and this is what the famous library OpenCV is good for. Moreover, if the object to be

detected is already known, SIFT (Scale-invariant Feature Transform) and SURF (Speeded Up

Robust Features) are well-known algorithms for finding correspondences between a given

image and an image of the known object, which enables them to finally detect the object. An

implementation of these two for a service robot classifying food boxes is seen in [12]. Going

further, depth information present in RGB-D images provide better classification for ma-

chine learning models as the model can make decisions also on the object’s dimension [16].

For a point cloud, libraries like PCL(Point Cloud Library) can be used to do some segmen-

27

tation and clustering processes to identify special features like some geometrical shapes or

planar surfaces or even do different filters as in [12]. In the end, the training of a machine

learning model is already a hard process. Furthermore, the functions related to 2D image

processing are more flexible than those related to point clouds, not to mention that the use

of easily identifiable fiducial markers or other hand-crafted features is well-justified as they

provide good results in a variety of research projects, to the best of the author’s knowledge.

Hence, this study proposes the use of ArUco markers, a type of fiducial markers that is com-

monly used in vision applications. The next section will elaborate upon this type of markers.

3.2 About ArUco Markers

3.2.1 Theory and Implementation

ArUco markers are binary square fiducial markers that were initially developed for Aug-

mented reality applications [21]. ArUco library stands for: Augmented Reality University of

Cordoba and it was developed in [6]. A typical 6x6 ArUco marker is shown in Fig.(3.1a). It is

called binary because it is made up of small squares(bits) that can either be black or white.

Binary square markers in general are easily detectable in the image and their inner binary

codification makes them specially robust, allowing the possibility of applying error detec-

tion and correction techniques[21]. As ArUco is written in C++, is extremely fast, and easily

implemented, it has gained a great popularity in computer vision applications and a lot of

online material is available on it, and this is why it is chosen for this study. Several other

fiducials exist and have their own libraries like AprilTag, ArToolKit+, ARTAG, CHILITAGS [6].

The uses for ArUco, and fiducials in general, are camera calibration and pose estimation, for

which, the methodology is well-explained on the website of OpenCV [21], however it is not

comprehensive to all the details of the marker’s use. A general summary of the implementa-

tion steps is given below:

Marker Creation A marker can be created as an image, as shown in Fig.(3.1a) with a sam-

ple script from OpenCV, however the image has to be printed in real dimensions on a PDF,

which depends on PPI(Pixels Per Inch) rate. Therefore, it is recommended to use this online

tool that generates the PDF for the marker with real dimensions.

28

https://chev.me/arucogen/
https://chev.me/arucogen/

Choice of Dictionary The dictionary is an indication of how many bits the marker is made

of. There could be 4x4, 5x5, 6x6 and 7x7 and the choice depends on the image resolution

and how far away the marker is. The more bits, the more words in the dictionary, and the

smaller the chance of confusion. However, more bits mean that more resolution is required

for correct detection [18]. That is why for a low resolution, it is better to choose a smaller

dictionary. Each marker has its own ID and thus each dictionary has a limited size of mark-

ers. There are sizes ranging from 50 to 1000 for each dictionary, depending on the chosen

type.

Detection Parameters Detection has a set of parameters that need to be tuned to have

better detection of the marker, and for that it is advised to thoroughly understand the detec-

tion process explained in [21]. Detection for a normal image full of markers, as in Fig.(3.1b),

starts with an adaptive thresholding which is good for detecting change of pixel intensities,

as seen in Fig.(3.1c).Note that playing with the window size of the thresholding can have

a significant effect on the boundaries of the markers, therefore these must be checked ac-

cording to the lighting conditions. Furthermore, counter filtering followed by square poly-

gon approximation is used to extract possible candidates of markers based on minimum

and maximum allowed contour perimeters in pixels. Here also, allowing small perimeters

to detect far markers can be at the expense of increased false positives. The next step is

to do perspective transformation, as in Fig.(3.1d), in order to extract the value of each bit,

which will be followed by dividing the transformed image into a grid of dimension equal to

the chosen dictionary plus one for the border, as shown in Fig.(3.1g). Each small square in

the grid will be assigned a value of one or zero and finally identify the ID of the marker. The

parameters related to this process are better left to their default values. After the markers are

detected, their corners are refined using several methods, The fastest method is the default

one, however it is not the best. Better refinement comes at the expense of slower code hence

a trade-off must be made. The selected parameters after tuning will be listed in section 3.4

Pose Estimation Pose is referred to as the position and orientation of a frame in space.

If the camera’s intrinsic parameters, namely the camera matrix and the distortion coeffi-

cients, and the marker’s real length are known, then the frame constructed from detecting

the marker’s 4 corners in the image frame, as seen in Fig.(3.1f), can be de-projected into the

corresponding 3D frame, which is the marker frame w.r.t. the camera frame. The estimated

29

marker frames are drawn as in Fig.(3.1g), where the marker frame is centered at the marker

center with R,G,B being for X, Y, Z, respectively.

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.1: ArUco Detection and Pose Estimation (a) 6x6 ArUco Marker (b) Raw Image with
ArUco Markers of different IDs (c) Image after Adaptive thresholding fingers (d) Marker can-
didate after perspective transformation (e) Marker cells to know the ID of marker (f) ArUco
Marker frame in image frame (g) Marker frames in 3D w.r.t. camera frame drawn after pose
estimation

3.2.2 Variants of ArUco

There are different variants spawning from ArUco, and for reasons that will be explained

later, two will be used during this study: ArUco and ChArUco boards, Fig.(3.2a) and Fig.(3.2b),

respectively.

For what concerns the creation, there is no online tool for ArUco boards, so they must

be created as an image then converted to PDF. Care must be taken to not apply any scaling

while printing to conserve dimensions. Practical tips on this aspect are present in the Annex

in section 8.2. For ChArUco boards, this online tool is used.

30

https://calib.io/pages/camera-calibration-pattern-generator

(a) (b)

Figure 3.2: (a) ArUco Board (b) ChArUco Board= Chess + ArUco

3.3 Rotation Matrices and Homogenous Transformations

Before proceeding further, a brief recall is given on the rotation matrices and homoge-

neous transformations, which are very important tools in describing poses of rigid bodies

w.r.t. each other.

Rotation Matrix For two rigid bodies (A) and (B) in space having their respective frames,

as shown in Fig.(3.3a), it is possible to find the orientation of frame (B) w.r.t. frame(A) using

the rotation matrix as follows:

ARB = [A XB
AYB

A ZB] (3.1)

where A XB ,A YB ,A ZB are the unit vectors of frame (B) expressed w.r.t. frame (A).

The following properties are noted for a rotation matrix:

• Chain rule property, meaning: ARC ×
C RB =

A RB

• It is a 3x3 orthogonal matrix, meaning: RT
=R−1, hence ARB×

B RA = I and determinant

= 1

• For two frames with the same origin, as in Fig.(3.3b), a point P can be expressed in the

other frame as follows:

A p =A RB ×
B p (3.2)

31

(a) (b)

Figure 3.3: (a) Two frames in space (b) Two frames having the same origin

The rotation matrices corresponding to rotations around the x,y,z axes will be used

throughout the study and are given below:

Rx(α) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

0 cosα −sinα

0 sinα cosα

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Ry(β) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Rz(γ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cosγ −sinγ 0

sinγ cosγ 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.3)

There exist other mathematical notations for expressing orientation like axis-angle

representation, and unit quaternions, each having its advantages and disadvantages; how-

ever, they will not be used throughout this study.

Homogenous Transformation For two rigid bodies (A) and (B) in space having the respec-

tive frames, as shown in Fig.(3.4), it is possible to find the position and orientation of frame

(B) w.r.t. frame(A) using the homogenous transformation matrix as follows:

ATB =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ARB tAB

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.4)

where ARB is the rotation matrix of (B) w.r.t. (A) and tAB is the translation vector of (B)

w.r.t. (A), which is the coordinates of OB in (A).

The following properties are noted for a transformation matrix:

• Chain rule property, meaning: ATC ×
C TB =

A TB

• Always invertible, meaning: (ATB)
−1
=

B TA

• A point p expressed in frame in (B), as shown in Fig.(3.4), can be expressed in frame

32

(A) as follows:

A p = tAB +
A RB ×

B p or

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A p

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
A TB ×

⎡
⎢
⎢
⎢
⎢
⎢
⎣

B p

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.5)

Figure 3.4: Two frames with different origins

3.4 Pose Estimation of Block

As explained in section 3.2.1, pose can be estimated by knowing the camera intrinsic param-

eters and the real size of the marker. So far, this can be performed by a regular monochrome

camera1. The advantage of having the Intel Realsense D455 is:

• It is factory-calibrated, and unless the camera has received a blow or has been used

for a long time, there is no need to perform camera calibration to extract the intrinsic

parameters

• It is a depth camera. Pose is returned from the OpenCV pose estimator function as

a translation vector tvec and a rotation vector rvec in axis-angle representation2. tvec

is nothing but the 3D coordinates of the marker center w.r.t. camera frame, hence

they can be replaced by the 3D coordinates retrieved by the camera at the pixel of

the marker center. rvec can also be estimated by constructing vectors from the 3D

points retrieved by the camera associated with the marker corners; however, this be-

comes tricky when dealing with an ArUco board, as it will be seen below. Therefore,

1A camera producing images in one color scale. For example, grayscale.
2It can be converted to a rotation matrix using Rodriguez formula, given by cv2.Rodriguez()

33

the translation vector is from the camera and the rotation one remains from the pose

estimator.

In theory, if a marker is fixed on one surface of a block, as in Fig(3.5a), the marker frame

is also considered as the block frame, and this frame can be transformed to any other frame

rigid to the block. This is useful because for a such a block, the grabbing is performed on the

side face, hence the block frame must be centered at the grabbing point. This will be made

clearer in the grabbing experiments in chapter 5.

(a) (b)

Figure 3.5: (a) Pose estimation of marker frame from single marker: X for Red, Y for Green
and Z for Blue R. (b) Pose estimation with a 3x2 ArUco Board

In practice, some rotation matrix terms heavily fluctuate between two consecutive frames

due to the ambiguity problem. The pose estimation using only 4 co-planar points, as seen

in Fig.(3.1f), is subject to ambiguity [18]. A marker, as shown in Fig(3.6a), could project at

the same pixels on two different camera locations. In general, the ambiguity can be solved,

if the camera is near to the marker. However, as the marker becomes small, the errors in the

corner estimation grows and ambiguity comes as a problem[18].

34

(a) (b)

Figure 3.6: (a) The ambiguity problem: the same projection could come from two different
cubes: the ones in red and blue (b) Spikes in pitch angle reading from pose estimation from
one ArUco marker compared to the same pose estimation from an ArUco board

Another solution to reduce ambiguity is to estimate pose using several markers, and this

is the role of ArUco boards presented in the previous section. ArUco boards provide more

consistent and accurate readings, and also deal with occlusions3. A comparison is done to

show the difference between the Euler angles readings from an ArUco marker and from an

ArUco board. Note that the detection parameters were tuned and are shown in Table(3.1).

Over a fixed interval of time, the pose of the ArUco board seen in Fig.(3.5b), 1 m away from

the camera, is estimated. This pose is compared to that obtained from one marker of the

board. Fig.(3.6b) shows spikes in the pitch angle reading from the marker, whereas there are

no spikes from the ArUco board. Furthermore, Fig.(3.7) shows the readings of both poses

when the block is parallel to the camera (little to no ambiguity). The board clearly provides

readings with fewer fluctuations, having the following standard deviations in mm:

Roll Pitch Yaw

Board 0.0768 0.0799 0.0128

Marker 0.3088 0.3290 0.0504

It can be seen that the board is almost 4 times less fluctuating than the marker. Moreover,

the average of roll and pitch from the marker is shifted from that of the board. It is, therefore,

concluded that single markers are not a reliable source for orientation estimation.

3Occlusions are when some markers are not detected in the image. For example, covered by an object

35

(a) (b) (c)

Figure 3.7: Euler angles readings from pose of ArUco board vs pose of one marker of the
board: board orientation is almost 4 times less fluctuating than a marker’s. Measurements
at 30 Hz, 1 m away from the camera

adaptiveThreshWinSizeMin 5

adaptiveThreshWinSizeMax 20

adaptiveThreshWinSizeStep 5

cornerRefinementMethod CORNER_REFINE_SUBPIX

cornerRefinementWinSize 3

cornerRefinementMinAccuracy 0.01

cornerRefinementMaxIterations 50

Table 3.1: ArUco Detection Parameters. The other parameters are left to their default values.

An attempt was made to validate the estimated pose with the motion capture system Op-

tiTrack. However, it was suspended due to several technical difficulties. More details on this

can be found in the Annex in section 8.3

36

Chapter 4

Eye-to-Hand Calibration

After having determined the block’s pose w.r.t. the camera frame, it must now be obtained

w.r.t. the robot’s base so that the robot can grab the block. This chapter is about the eye-

to-hand calibration, the process by which, the homogeneous transformation from camera

frame to the robot’s base frame is obtained.

4.1 Theoretical Framework

The camera to robot calibration is a well-known problem is vision-guided robotics, and

in general, there exist 2 configurations [9]:

1. Eye-to-hand: the camera is attached to a fixed pole, facing the working range of the

robotic arm’s end-effector.

2. Eye-on-hand: the camera is mounted on the robotic arm, aligned with the end-effector.

The eye-to-hand configuration is chosen because the robotic design of the Brikiebot Project

does not allow an ’eye-on-hand’ solution; therefore, an eye-to-hand solution is chosen in

this work.

Fig.(4.1) shows the problem of the eye-to-hand calibration. A calibration board, normally

a chess board or an ArUco or a ChArUco board, is rigidly attached to the gripper and thus,

g r i p Tboar d is fixed. At two different positions of the gripper, namely (i) and (j), g r i p Tboar d

is the same, hence:

g r i p T
(1)
base

base Tcam
camT

(1)
boar d =

g r i p T
(2)
base

base Tcam
camT

(2)
boar d (4.1)

37

Right multiplying by (camT
(1)
boar d)

(−1), then left multiplying by (g r i p T
(2)
base)

(−1), we get:

(
g r i p T

(2)
base)

(−1)g r i p T
(1)
base

base Tcam =
base Tcam

camT
(2)
boar d(

camT
(1)
boar d)

(−1) (4.2)

(4.2) can be seen as the system Ai X = X Bi , where X is base Tcam

Ai and Bi can be obtained by getting the following for each motion of the gripper: camTboar d

and g r i p Tbase

Figure 4.1: Eye-to-hand calibration problem: obtain base Tcam where (i) and (j) correspond
to different positions of the robotic arm’s gripper

4.2 Calibration Setup

Calibration Tool OpenCV provides a function that solves the previously mentioned sys-

tem. At least 3 different and non-parallel poses are required to perform the calibration.

However, more poses are recommended to have converging results. OpenCV offers five dif-

ferent methods to perform the calibration, for all of which, the convergence study will be

done. However, it is out of the scope to explain about each method. Additional information

can be found in [22].

Camera Fixation The camera is first fixed to a wooden plate using two M3 screws in the

mounting threads on the back of the camera. Then, the plate is screwed to a wooden beam

38

fixed to the ground. The fixed camera is shown in Fig.(4.3a).

Calibration Board Two boards are used: ArUco and ChArUco boards. Calibration was per-

formed 4 times: the first three with an ArUco board and the last with a ChArUco one. They

are both recommended to be used by OpenCV and by the different online forums. A wooden

plate is rigidly attached to the gripper using two screws, then the calibration board is taped

to it. The setup can be seen in Fig(4.3b). Care must be taken to not allow any air pockets

under the board.

Data Recording For each position of the gripper, the following data are recorded in a spread-

sheet:

• camTboar d , using the pose estimation with OpenCV explained in 3.4

• g r i p Tbase , using the robot’s direct kinematics model in MATLAB1

Procedure

1. Display the camera view

2. Manually manipulate the robot’s joint angles to a position close to the camera whilst

the board is fully detected, as in Fig.(4.3b)

3. Record the joint angles at the current position and feed them to the MATLAB model.

Then, record the board’s pose with camera2.

4. Repeat the previous steps for a new sample. Note the following:

(a) manipulated positions should be taken as diversely as possible in all directions

in the image frame, as explained in Fig.(4.3c).

(b) Go to very close positions from the camera (the closer you are, the more accurate

the results), then go further(not more than 1 m) from the camera. When taking

close positions, go to the extent where the frame is filled with the board while

being fully detected, as in Fig.(4.3d)

1This model was validated by a researcher in BrikieBot project
2The camera can only do one thing at a time: record or display

39

(c) A practical tip is to change only one joint angle between two consecutive posi-

tions then start changing another angle when the current is not giving the desired

variation

5. After taking at least 20 samples, check the convergence of the results. 20 is an empirical

number based on what was seen in different online forums.

The flowchart of the whole procedure can be seen in Fig.(4.2)

Figure 4.2: Eye-to-hand Calibration Flowchart

(a) (b) (c) (d)

Figure 4.3: (a)Camera fixation (b)Initial calibration position: calibration board fully detected
by camera (c) Random poses should include different rotations around 3 perpendicular axes
(d) Close pose of a board filling image frame

4.3 Convergence

As stated previously, OpenCV offers 5 methods for performing the calibration: Tsai, Park,

Horaud, Andreff, and Daniilidis. It is important to check the convergence for each of them

to know if the results can change by taking more samples. 4 calibrations were performed: 3

with an ArUco board and 1 with a ChArUco board. ChArUco results converge more smoothly.

40

For the sake of brevity, only the ChArUco results will be presented, whereas the ArUco results

for 35 samples can be found in section 8.4 of the Annex. Fig(4.4) shows the convergence

study of ChArUco board calibration where 25 samples were taken. It can be clearly seen that

only the methods of Park and Andreff show a converging behavior. Each method solves the

system presented in the previous section differently; however, it is not the purpose of this

study to analyze these methods. Further information on these methods can be found in [23].

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Convergence study of eye-to-hand calibration with ChArUco board for the 5 dif-
ferent methods offered by OpenCV. Only the methods of Park and Andreff show a converging
behavior

4.4 Validation of Results

Having obtained the base Tcam , it is important to have a sense of its accuracy. In what

follows are two proposed experiments for a rough validation of the results.

41

4.4.1 Position

The first experiment is to validate the position. For this, the gripper center is manually

controlled to the center of an ArUco marker as shown in Fig.(4.5), then the gripper position

from the direct kinematics is compared to what the camera reads after lifting the gripper

from the marker. One marker is used because only position is needed for this experiment,

so the orientation is irrelevant, and that is why using a bigger marker than the individual

markers of the board is chosen. Three measurements were taken at different positions. The

results are shown in Table(4.1). As the gripper was manually controlled to the desired posi-

tion, an acceptable error range would be 5 mm. The method of Park shows less RMS3 error

than that of Andreff with a max error of 3.04 mm, compared to 4.27 mm for the latter, which

is acceptable for both.

Figure 4.5: Approximate validation of position by aligning the gripper center to the center of
the ArUco marker, then marker center position is measured. Results are in Table(4.1).

Measurement 1 (mm) Measurement 2 (mm) Measurement 3 (mm)

3D Coordinates x y z 3D Coordinates x y z 3D Coordinates x y z

Park -556.07 -381.32 705.33 Park -572.74 79.52 735.63 Park -436.74 -168.21 703.02

Andreff -557.59 -383.92 707.95 Andreff -573.86 76.98 737.57 Andreff -438.10 -170.90 705.15

Real -553.99 -376.72 703.29 Real -570.20 78.66 732.20 Real -434.20 -170.60 704.10

RMS Error

Park 2.40 3.04 2.39

Andreff 3.72 4.27 4.15

Table 4.1: Position validation of eye-to-hand calibration. Results are within the acceptable
range due to manual alignment of gripper

3Root Mean Square

42

4.4.2 Orientation

The second experiment is to validate the orientation. For this, the gripper is manually

moved so that its edges are aligned to the edges of the ArUco board, as shown in Fig.(4.6a).

It does not matter where the gripper center is placed as long as its edges are aligned with the

board’s edges. For this experiment, only orientation is relevant, hence a board is used. Fur-

thermore, as the orientation is very sensitive to any small perturbations, the measurement is

done while the gripper is on the board. Moreover, Fig.(4.6b) shows the gripper’s orientation

in the base frame, which is not the same as the board’s orientation. For that, a first rotation

is done around y by 180 deg to align z , then a second rotation around the new z by 90 deg to

align x and y. Mathematically, this is expressed as:

base Ral i g ned2g r i p =
base Rboar d ×Ry(180)×Rz(90) (4.3)

(a) (b)

Figure 4.6: Approximate orientation validation of eye-to-hand calibration (a) gripper edges
are manually aligned with marker edges, then board orientation is measured (b) Gripper
frame drawn from direct kinematics at the robot position in (a). The board frame must be
rotated to be aligned with the gripper frame. Results are in Table (4.2)

four measurements were taken, and the results are shown in Table(4.2). As the gripper

was manually aligned, an acceptable error range would be 5 deg. The max RMS error of

Park is 9.74 deg on roll, compared to 9.88 deg for Andreff, also on the roll. Furthermore, both

methods have a very good approximation for pitch, scoring less than 1 deg RMS error. At first

sight, the relatively high errors on roll and yaw only can be attributed to the non-diversity of

taken samples; however, having repeated the calibration for four times, and taking as diverse

samples as possible, the results merely change.

43

Measurement 1 (deg) Measurement 2 (deg)

Euler Angles Roll Pitch Yaw Euler Angles Roll Pitch Yaw

Park 143.98 -85.34 -134.32 Park 150.60 -85.22 -114.99

Andreff 144.03 -85.46 -134.42 Andreff 150.17 -85.33 -114.60

Real 134.40 -84.64 -124.59 Real 143.00 -84.77 -107.60

Measurement 3 (deg) Measurement 4 (deg)

Park 151.74 -88.67 -121.38 Park 175.41 -88.06 -175.78

Andreff 150.68 -88.78 -120.37 Andreff 177.91 -88.14 -178.32

Real 138.50 -87.58 -108.53 Real 168.01 -87.10 -168.74

RMS error

Park 9.74 0.84 9.54

Andreff 9.88 0.94 9.71

Table 4.2: Orientation validation of eye-to-hand calibration. Results are within the accept-
able range for pitch but not for roll and yaw

4.4.3 Conclusion

Although the errors for the position are accepted, the errors of orientation are not within

what is expected. This can either be related to something wrong done in the experiment

setup, or it is indeed the calibration error. Normally, an offset can be added to reduce this

error. However, this will be left to when the grabbing is done. For the next chapters, the

method of Park will be used, as it has scored less RMS error in the position and orientation.

4.5 GitHub Repository

One of the important achievements of this study is the development of a pipeline in

Python language that makes the eye-to-hand calibration with OpenCV easier. Even though

the calibration function is already provided by OpenCV, the tools developed in this study

serve for:

• organization of recorded samples in spreadsheets

• display of calibration board

• pose recording

44

• check convergence

• utility functions for Euler angles and rotation matrices

All this can be time-consuming if the camera needs to be re-calibrated. Therefore, all the

written scripts will be made available in the form of a GitHub repository 4: link. Further-

more, it has not been much time since OpenCV added this functionality, so it is useful for

the robotics community to add the data obtained with the 5 calibration methods.

4The repository will be published shortly after the submission of this study to allow time for reorganizing all
scripts in a clean way

45

https://github.com/ManarMahmalji/Eye-to-hand-Calibration-with-OpenCV.git

Chapter 5

Grabbing Experiments

Grabbing the suspended block was the main reason of using a depth camera. In what

follows, two experiments to perform the grabbing are proposed. One for a static block laying

on the ground, and another for an oscillating block suspended to a crane.

5.1 Static Block

As explained in section 3.4, the obtained pose from the marker frame is also considered

as the block frame and this frame can be transformed to any other frame rigid to the block.

The grabbing is performed on the side face and the gripper should be placed as in Fig.(5.1a),

hence the block frame must be centered at the grabbing point, and it must be aligned with

the gripper as in section 4.4.2. For this, the homogeneous transformation is a translation

of the obtained frame along x,y and z then rotation by 90 degrees around y, followed by a

rotation around z by 270 degrees. This is shown in Fig.(5.1b).

Mathematically, this is expressed as:

Ry(90)×Rz(270) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 −1

1 0 0

0 −1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,hence camTbl ock =
cam Tboar d ×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 −1 a

1 0 0 b

0 −1 0 c

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.1)

46

(a) (b)

Figure 5.1: (a) Desired grabbing of block (b) Applying a homogeneous transformation to
obtain the block frame at a desired grabbing position

As there is no collision avoidance in the trajectory planning of the robot, the robot is first

asked to go to the camTbl ock , seen in eqn.(5.1), but shifted up in the z direction, as seen

in Fig.(5.2). This is then followed by a vertical descent of the gripper by the amount that

was shifted. At 1 m away from the camera, three grabbing experiments at different board

orientations were realized and are shown in Fig.(5.3). The robotic arm in Fig.(5.3c) reached

a joint limit and could not, therefore, descend any further. Note that the block width is 12 cm

and the gripper opening is 15 cm. It was mentioned in section 4.4.3 that some tuning offset

can be added to correct the obtained base Tcam ; however, the grabbing is visually acceptable

to what is required. Hence, no tuning will be done.

Figure 5.2: Gripper is first asked to go to a position vertically shifted up to avoid collision
with block. Then, it descends vertically to the required position

47

(a) (b) (c)

Figure 5.3: Three grabbing experiments at different board orientations. The robotic arm in
(c) reached a joint limit and could not descend further. The block width is 12 cm and the
gripper opening is 15 cm

5.2 Oscillating Suspended Block

The grabbing of a suspended block, if static, is no different from the grabbing performed

in the previous section. If the block is oscillating for some reason, the robot cannot proceed

to grab. Therefore, this section proposes a criterion for determining whether a block is static

or not, based on which, a grabbing decision is made. The simplest approach to say that a

block is motionless is when its pose is no longer changing, and this is characterized by com-

puting the standard deviation over a fixed-size, sliding window of previous measurements,

also known as moving standard deviation. Fig.(5.4) demonstrates this idea with a window of

size: 3. Note that this algorithm depends on previous values. Thus, it can only start working

if there is at least a window size of previous and current values.

Figure 5.4: Moving standard deviation of window size 3

The proposed algorithm is to judge a block is static when the moving standard deviations

of the pose coordinates are below certain limits. To determine these limits, a test to measure

pose for a static, suspended block is done. The test is over 10(s) interval at 1 m away from the

camera. Looking at the standard deviations in Fig.(5.6), the limits will be empirically defined

48

as twice the values for what was obtained for each pose coordinate. For every measured

pose, a block is considered static if all the pose coordinates are below their respective limits,

otherwise it is considered moving.

Pose Standard deviation

x (mm) 0.65

y (mm) 1.12

z (mm) 4.27

Roll (deg) 0.08

Pitch (deg) 0.11

Yaw (deg) 0.07

Figure 5.6: Standard deviations of pose measurements of a static suspended block over a
10(s) interval, 1 m away from the camera

After applying a perturbation on the suspended block, seen in Fig.(5.6), and giving it

enough time to settle to the end, Fig.(5.7) shows in red the poses that were considered for

a static block. A window size of 20 was empirically chosen; otherwise, there would be false

positives. The algorithm determined two regions where the block is static, corresponding

to the beginning before the perturbation and the end after settling down. The results are

acceptable to proceed with grabbing the block; however, the following points are noted:

• A window size of 20 indicates that the camera needs to take 20 frames to judge a block

is static. With a 30 fps, this means 0.66 (s) of delay. This can be optimized with a lower

fps, at the expense of resolution

• A drawback of the use of Euler angles is the boundaries of their interval: [−π,π]. The

oscillations between the two values can be clearly seen in the roll and yaw measure-

ments. To the author’s knowledge, this can be solved using quaternions, but for this

study it does not cause a problem.

49

(a) (b) (c)

(d) (e) (f)

Figure 5.7: Using a moving standard deviation with a window size of 20 to determine if a
suspended block is static. Poses in red indicate that the block is static in two regions, corre-
sponding to the beginning before perturbing the block and the end after settling down

Fig.(5.8c) shows the final result of a grabbing action initiated only after a perturbed block

was considered static. A video demonstration can be found here. As explained in the previ-

ous section, due to the absence of collision avoidance feature in path planning, the gripper

is moved to a close position below the block, as in Fig.(5.8a), then it is aligned with the block

frame just below the block, as seen in Fig.(5.8b). After that, it moves to the grabbing posi-

tion in a series of movements to guarantee that it follows a straight line to the final grabbing

position, seen in Fig.(5.8c).

50

https://www.youtube.com/playlist?list=PLc2DKdGuH4n82zvEc9ee7eKdp0i5x4-w1

(a) (b) (c)

Figure 5.8: Grabbing experiment of an oscillating suspended block after settling down (a)
initial position close under the block (b) intermediate position: alignment with block frame
whilst under the block(c) final grabbing position

5.3 Camera and Robot in ROS

For what concerns the robot-camera interface in ROS, it is a simple architecture. There are

two nodes: a node that performs the trajectory planning of the robot, referred to as "Kuka",

and a node that processes the image frame and returns the pose of the block, referred to

as "IntelD455". Camera node publishes to two topics and the robot node subscribes to two

topics as explained below:

• "IntelD455" publishes pose to the topic "BlockPose"

• "IntelD455" publishes block state (static or moving) to the topic "BlockState"

• "Kuka" subscribes to the topic "BlockPose"

• "Kuka" subscribes to the topic "BlockState"

The corresponding rqt graph of this architecture is shown in Fig.(5.9). The algorithm is

that when "Kuka" receives a "BlockState" of static, it takes the block’s pose from "BlockPose"

and proceeds to grab it.

Figure 5.9: Camera-Robot interface in ROS: rqt graph of the related nodes and topics

51

The entire hardware/software architecture is shown in Fig.(5.10). From the robot’s side,

robot applications are programmed in Java and executed on the robot controller. In this

study, KUKA Sunrise.OS 1.17, KUKA Sunrise.Workbench 1.17 and KUKA Sunrise.FRI 1.17 are

used to program the robot. To execute programs in robot applications, the FRI client ap-

plications are created, in C++/Python, and are executed on an external system. In our case,

on a Laptop with Intel(R) Core(TM) i7-6500U CPU 2.50GHz 2.60 GHz. The C++ applications

implemented in this study1 run in parallel and are the:

1. FRI Interface. This application interfaces the control architecture with the robot con-

troller. It is needed to read robot joint positions and send robot torque commands.

2. The "Kuka" node, which uses the ROS package: Kinematics and Dynamics Library

(KDL), distributed by the Orocos Project, to compute the inverse kinematics and plan

the trajectory to any given pose. This node runs at 200 Hz

Lastly, the "IntelD455" node, which is written in Python, configures the camera, retrieves

raw images, estimates the block’s pose and evaluates whether the block is static or not. This

node runs at 20 Hz2.

Figure 5.10: Software/hardware architecture of the grabbing experiments

1The FRI client application are already written by the BrikieBot researcher
2The "Kuka" node frequency must be a multiple of the "IntelD455" node frequency

52

Chapter 6

Pose Tracking

The proposed grabbing algorithm in the previous chapter only works with blocks that are

relatively lightweight w.r.t. the robot’s payload. For real heavy blocks seen in Fig.(1.2), the

robot must go along with the block and dampen its motion slowly so that its inertia does

not damage the gripper. To test this approach, a very similar architecture is used as in the

previous chapter with only the following differences:

• The "IntelD455" node is publishing to "BlockPose" topic at 40 Hz

• "BlockState" topic is no longer needed

• The "Kuka" node always asks the robot to go to the pose subscribed from "BlockPose"

Different orientations of the block when the robot is asked to follow its grabbing pose can be

seen in Fig.(6.1), and a video demonstration can be found here. Note that the gripper fingers

were unmounted for easier use.

(a) (b) (c) (d)

Figure 6.1: Different orientations of the block when the robot is asked to follow its grabbing
pose

53

https://www.youtube.com/playlist?list=PLc2DKdGuH4n82zvEc9ee7eKdp0i5x4-w1

The following challenges are noted:

• The pose data is very noisy, causing heavy fluctuations of the robot around a fixed

position of the block. This can be divided into two parts:

1. Spikes due to ambiguity or other reasons. Spikes in poses physically induce wild

movements of the robot. These spikes were already filtered out by empirically

setting a derivative limit on each of the pose elements. However, implementing

such a filter also means that the robot best responds to slow movements, which

is acceptable because no grabbing will be done for rapidly oscillating blocks

2. Small variations of readings for an almost static block make the robot’s behavior

unsteady. This is improved by tuning a moving average filter. A moving average

filter is the same as the moving standard deviation seen in Fig.(5.4), but with an

average instead.

• The frequency of pose estimation is not only related to the camera fps, but also to the

speed of the pose estimation script. An important conclusion regarding Python is that

it slows down the frame rate. For a frame rate of 30, and resolution of 1280x720, the to-

tal frequency of the camera node could not go more than 20 Hz because the execution

time of the Python script is more than 1/30= 33 ms, which explains the decrease in

frequency. For a frame rate of 60, and resolution of 848x480, the total frequency could

not go more than 40 Hz, which is reasonable since lower resolution means lower pro-

cessing time. To be able to achieve closer fps to the camera fps, it is strongly advised

to write in C++ as it is a low-level language.

• Pose estimation frequency is obviously a hardware/software limit. Even with an opti-

mized frequency, an important problem is that the camera could not be fast enough

to map the dynamic behavior of the block. For that, a dynamic estimator, an extended

Kalman filter for instance, can be used to fuse the pose of the block’s dynamic model

with the pose from camera.

54

Chapter 7

Future Work and Conclusion

7.1 Future Work

The BrikieBot project proposes a quite innovative approach for bricklaying. From within

the scope of computer vision, the following aspects could be interesting for future work:

Point Cloud Processing The study did not propose any detection approach based on point

cloud processing. An ArUco marker can be placed above a block. In reality, the marker would

be placed over a modified version of the clamp that connects the block to the crane cable,

shown in Fig.(7.1a). Based on the measured marker’s depth, the point cloud can be filtered

in a way to include only the region around the box, as in Fig.(7.1b). Then, this point cloud

can be analyzed with RANSAC, in PCL (Point Cloud Library) for example, to find all the flat

surfaces in it, as is done in [19] and [2]. An expected output is shown in Fig.(7.1c). Note that

it was already tried with typical image processing techniques like contour detection, shape

fitting...etc. to extract surfaces, but the main problem was that there is no clear way to sep-

arate the adjacent surfaces, whereas in a point cloud, they can be separated because every

pixel has 3D coordinates. Then, the detected flat surfaces can then be fitted into polygons

of known corners, from which pose can be estimated as the vector product of the vectors of

two adjacent edges. This way, there is no need to estimate orientation from an ArUco board.

The disadvantage could be processing time and a possibly heavy fluctuations depending on

the polygon-fitting algorithm.

55

(a) (b) (c)

Figure 7.1: Applying a depth filter based on an ArUco marker placed on a modified clamp (a)
Regular clamp used with real blocks (b) Depth filtering with an ArUco marker (c) Expected
output with point cloud segmentation algorithms like RANSAC

Inertial Measurement Unit A 9DOF IMU, namely an accelerometer, a gyroscope, and a

magnetometer, can give the absolute orientation w.r.t. NED1 frame. If such an IMU is placed

on the connector between the block and the crane cable, and with a 9DOF IMU in the cam-

era, the relative orientation between the IMU and camera frame can be obtained. A Python

script was developed to read Euler angles from a BNO0552 9DOF IMU with an Arduino Uno

board. Unfortunately, it was later discovered that Intel Realsense D400 series only features 6

DOF IMUs. This is why, referring to Table (2.2), the ZED2i camera would have been a better

choice because it features a 9 DOF IMU. Furthermore, the ZED2i is more featured for spatial

mapping, which is useful if, in the future, the camera is to compare a CAD model of a desired

wall to an actual wall and make decisions. A possible disadvantage of an IMU is to align its

frame to the block frame.

LiDAR Using a laser scanner or a LiDAR, as with the In-Situ Fabricator mentioned in sec-

tion 1.3.2, provides denser depth maps than cameras, which is better for processing and

extracting geometrical features. Unfortunately, these scanners are much more expensive

than cameras.

Testing with Commercial Microprocessors To the author’s knowledge, image processing

algorithms behave differently when tested on real hardware than when tested on comput-

ers. An off-the-shelf microprocessor, with a graphics card, that is commonly used in vision-

1North East Down
2Helpful online material for this sensor is present here

56

https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor/python-circuitpython

guided robotics is the Jetson Nano board.

Eye-to-hand Calibration Validation A novel validation approach for the eye-to-hand cal-

ibration is proposed. It was not applied in this study because it was lately envisioned. The

eye-hand calibration function in OpenCV works for both the eye-to-hand and eye-on-hand

configurations according to what is input to the function.

• For eye-to-hand, where camera is fixed to ground and board is fixed to robot, it takes

camTboar d and g r i p Tbase and outputs base Tcam

• For eye-on-hand, where board is fixed to ground and camera is fixed to robot, it takes

camTboar d and base Tg r i p and outputs g r i p Tcam

In fact, an eye-to-hand configuration can be seen as an eye-on-hand configuration

if the board is considered as a camera fixed to the robot and the camera is considered as

a board fixed to ground. g r i p Tboar d can be obtained by giving to the calibration function

boar d Tcam , obtained by transposing camTboar d , and base Tg r i p . This is useful because, while

keeping the calibration board fixed to the gripper, the gripper can be manually rotated in

roll, pitch or yaw(manually), and base Tg r i p is recorded. Then, this can be compared to the

base Tg r i p obtained from base Tcam ×
cam Tboar d ×

boar d Tg r i p , where:

• base Tcam , from eye-to-hand configuration function

• camTboar d , from camera

• boar d Tg r i p , from the transpose of what eye-on-hand configuration function gives

7.2 Conclusion

The main reason of using the RGB-D camera was to grab a suspended block, which was

clearly achieved in the video demonstration in chapter 5. Although the achieved grabbing

follows a slow trajectory, is performed in a lab environment, and its accuracy lies within a

rough margin of 2-3 cm, the aim of this study was to make a proof of concept of the idea of

using a depth camera to visually assist the robot grab a block. Several challenges about the

entire BrikieBot architecture were made clearer during this work. From the robot’s side, the

shape of the gripper makes the trajectory planning very tricky. Hence, the redesign of the

57

gripper must be taken into consideration. From the camera’s side, it is definitely very chal-

lenging to find an accurate and consistent pose for different orientations of the block. Start-

ing with fluctuating pose readings from the ArUco markers, then eye-to-hand calibration

errors and difficulty to measure them, and finally pose estimation code execution speed,

along with camera fps limit.

Contributions The scientific and technical contributions of this thesis are summarized as

follows:

• A proof of concept of the proposed grabbing approach in the Brikiebot project

• An open source GitHub repository for the eye-hand-calibration process with OpenCV,

which can be used in any robotics project with the same hardware as this one.

• Integration of camera data into the robot’s interface. This and the previous contribu-

tion will create a user manual for easy setup in all the future projects that use the robot

and the camera.

• The results of this thesis will contribute to a conference paper that will be submitted

to the IEEE International Conference on Robotics and Automation (ICRA) 2023. To in-

crease this contribution, the work will continue during the summer break to improve

the results obtained in chapter 6.

Learning Outcomes The learning outcomes of this thesis are listed as follows:

• In terms of programming, hands-on experience with OpenCV functions, ROS and

Linux OS commands was acquired

• An excellent understanding of ArUco markers detection and pose estimation, along

with its limitations

• A good understanding of the principles of stereo cameras. Particularly, Intel Realsense

D455, an off-the-shelf camera used commonly in robotics projects.

• A good understanding of rigid bodies relative orientation and position.

• A good understanding of a collaborative robot’s control concepts.

• A working knowledge of the motion capture system OptiTrack.

58

Bibliography

[1] Carlos Balaguer and Mohamed Abderrahim. Robotics and Automation in Construction.

IntechOpen, Rijeka, 2008.

[2] Carolina Bianchi. Extracting contact surfaces from point-cloud data for autonomous

placing of rigid objects. Master’s thesis, KTH, School of Electrical Engineering and

Computer Science (EECS), 2020.

[3] Cognex Corporation. Cognex website. Link.

[4] A. Deris, I. Trigonis, Andreas Aravanis, and Ellie Stathopoulou. Depth cameras on uavs:

A first approach. ISPRS - International Archives of the Photogrammetry, Remote Sensing

and Spatial Information Sciences, XLII-2/W3:231–236, 02 2017.

[5] Guoguang Du, Kai Wang, and Shiguo Lian. Vision-based robotic grasping from object

localization, pose estimation, grasp detection to motion planning: A review. ArXiv,

abs/1905.06658, 2019.

[6] S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, and M.J. Marín-Jiménez. Au-

tomatic generation and detection of highly reliable fiducial markers under occlusion.

Pattern Recognition, 47(6):2280–2292, 2014.

[7] Gergely Horváth and Gábor Erdos. Object localization utilizing 3d point cloud cluster-

ing approach. Procedia CIRP, 93:508–513, 01 2020.

[8] D. Hwang. Contour crafting-the emerging construction technology, 2005.

[9] Trung-Son Le, Quoc-Viet Tran, Xuan-Loc Nguyen, and Chyi-Yeu Lin. Solpen: An accu-

rate 6-dof positioning tool for vision-guided robotics. Electronics, 11(4), 2022.

[10] Emanuele Garone Michele Ambrosino, Philippe Delens. Control of a multirobot brick-

laying system. Advanced Control for Applications, 3, 2021.

59

https://www.cognex.com/en-be/industries/automation/robotic-system-integrators

[11] NCCR. Nccr digital fabrication (dfab) website. Link.

[12] António J. R. Neves, Rui Garcia, Paulo Dias, and Alina Trifan. Object detection based on

plane segmentation and features matching for a service robot. International Journal of

Computer and Information Engineering, 10(4):775 – 782, 2016.

[13] Krzysztof Okarma. Applications of computer vision in automation and robotics. Ap-

plied Sciences, 10(19), 2020.

[14] Omron. Technologies of forpheus. Link.

[15] Pickit-3D. Pickit-3d website. Link.

[16] Intel Realsense. Beginner’s guide to depth. Link.

[17] Guinness World Records. The record breaking robot that teaches humans how to play

table tennis. Link.

[18] Rafael Muñoz Salinas. Aruco: An efficient library for detection of planar markers and

camera pose estimation. Link.

[19] Vladimir Tadic, Akos Odry, Ervin Burkus, Istvan Kecskes, Zoltan Kiraly, Mihaly Klincsik,

Zoltan Sari, Zoltan Vizvari, Attila Toth, and Peter Odry. Painting path planning for a

painting robot with a realsense depth sensor. Applied Sciences, 11(4), 2021.

[20] Mark Taylor, Sam Wamuziri, and Ian Smith. Automated construction in japan. Pro-

ceedings of the Institution of Civil Engineers - Civil Engineering, 156(1):34–41, 2003.

[21] OpenCV Website. Detection of aruco markers. Link.

[22] OpenCV Website. Opencv calib3d. Link.

[23] OpenCV Website. opencv::calib3d::handeyecalibrationmethod. Link.

[24] Zivid. Zivid website. Link.

60

https://www.dfab.ch/
https://www.omron.com/global/en/technology/information/forpheus/forpheus_technology.html
https://www.pickit3d.com/en/
https://www.intelrealsense.com/beginners-guide-to-depth/
https://www.guinnessworldrecords.com/news/2017/2/japan-tour-table-tennis-robot-earns-a-futuristic-record-title-463501
https://docs.google.com/document/d/1QU9KoBtjSM2kF6ITOjQ76xqL7H0TEtXriJX5kwi9Kgc/edit
http://man.hubwiz.com/docset/OpenCV.docset/Contents/Resources/Documents/d5/dae/tutorial_aruco_detection.html
https://docs.rs/opencv/latest/opencv/calib3d/fn.calibrate_hand_eye.html
https://docs.rs/opencv/latest/opencv/calib3d/enum.HandEyeCalibrationMethod.html
https://www.zivid.com/

Chapter 8

Annex

8.1 Additional Setup for Intel Realsense D455

This section mentions additional procedures related to the camera setup and getting famil-

iar with the SDK.

SDK Installation and Setup

• Install SDK: link. Can start directly from the " Installing the Packages " section

Camera not recognized on USB in Ubuntu 18.04 from first time and is recognized on

other OS? If prompted with what is seen in Fig.(8.1) while installing dkms package, it

means that you should disable secure boot. Click ok, then choose a key. After installa-

tion of package is finished, reboot, then you will be promoted with a blue screen where

you choose enroll MOK and you enter the chosen key. If you did not enroll MOK, then

uninstall the package and repeat the procedure. If still not recognized, check this link.

61

https://github.com/IntelRealSense/librealsense/blob/development/doc/distribution_linux.md
https://wiki.ubuntu.com/UEFI/SecureBoot/DKMS

Figure 8.1: MOK Prompt

• Install Python wrapper: link. Note that if you are using python31, use:

$ pip3 install pyrealsense2

instead of

$ pip install pyrealsense2

• Check python version

$ python3 --version

• Check OpenCV version:

$ python3

$ import cv2

$ cv2.__version__

• OpenCV not updating even with update and upgrade commands, use:

$ pip3 install opencv-contrib-python3

1Difference in commands python vs python3: python3 instead of python and pip3 instead of pip

62

https://github.com/IntelRealSense/librealsense/blob/master/wrappers/python/readme.md

Important SDK Tools

• Launch Intel Realsense SDK: a quick way to check if camera is connected

$ realsense-viewer

• Check available fps and resolutions for different stream profiles:

$ rs-enumerate-devices

• Check available extrinsic and intrinsic camera information:

$ rs-enumerate-devices -c

Running a c++ code with OpenCV on Ubuntu After installing the developer package from

the installation page, try:

$ g++ filenmame.cpp -lrealsense2 ‘pkg-config --cflags --

libs opencv4‘

or

$ g++ filename.cpp -lrealsense2

or

$ g++ -std=c++11 filename.cpp -lrealsense2

Extension USB Cable Any USB 3.0 super speed extension cable with a 5 Gigabits transfer

rate should work

8.2 ArUco Board Creation in PDF on Ubuntu 20.04

After choosing the board’s dimensions from the board creation script, choose to print the

image from the menu in Fig.(8.2a).Then, choose the paper size to A3, as in Fig(8.2b). Finally,

change units to millimeters and adjust them to what is expected, as in Fig.(8.2c). The exam-

ple below shows a 3x1 board of marker size 100 mm with 10 mm separation, hence the width

is 3x100 + 2x10 = 320 mm and the height is 100 mm. For reference, the OpenCV library in

which the c++ sample code is given in here, but this study develops a similar code in python.

63

https://github.com/jing-vision/opencv-aruco

(a) (b) (c)

Figure 8.2: ArUco board printing on PDF

8.3 Pose Estimation Validation with OptiTrack

OptiTrack is a motion capture system used for precise 6DOF position tracking, both in

indoor and outdoor environments. The system is made up of a set of cameras that emit IR

light, which, in its turn, is reflected by passive markers. As these markers can be detected by

the camera sensors, they are used to construct a frame of any rigid body within the camera’s

working region. In an attempt to validate the estimated pose of a block with the OptiTrack

system present at the University lab, the following points are noted:

• A block frame is constructed by gluing a set of reflective markers just next to the cor-

ners of the ArUco board, seen in Fig.(3.5b). So far, the camera reads board pose w.r.t.

its frame and the OptiTrack system reads the constructed frame pose w.r.t. its chosen

ground frame.

• A transformation must be done between the OptiTrack base frame and the camera

frame. For this, a ChArUco board is used, as in Fig.(8.3). Before gluing the reflective

markers to the board’s corner, board pose is estimated w.r.t. camera frame. Then,

the markers are placed at the corners and are used to define the ground frame of the

OptiTrack system. That being done, all the measurements taken w.r.t. camera frame

can be transformed to the ground frame, thanks to the pose estimated by ChArUco

board. These measurements can be directly compared to what the OptiTack outputs.

This should work in theory; however, the detected markers by the OptiTrack cameras

were heavily blinking, the working space was not always available, lighting is a prob-

lem...etc. Eventually, the process was stopped due to its technical difficulties.

64

Figure 8.3: Proposed method to align OptiTrack ground frame w.r.t. ChArUco board frame
by putting reflective markers, within red circles, at the corners of the board. Camera frame
can then be transformed to board frame and hence the ground frame of OptiTrack

65

8.4 ArUco Board Eye-to-hand Calibration Convergence study

(a) (b) (c)

(d) (e) (f)

Figure 8.4: Convergence study of eye-to-hand calibration with ChArUco board for the 5 dif-
ferent methods offered by OpenCV. Only the methods of Park ,Horaud, and Andreff show a
converging behavior

66

	Introduction
	Scope of Study
	Outline
	State-of-the-Art
	Goal Statement

	Used Equipment
	RGB-D Camera
	Robotic Arm
	Software

	Object Detection and Pose Estimation
	Proposed Algorithm for Object Detection
	About ArUco Markers
	Rotation Matrices and Homogenous Transformations
	Pose Estimation of Block

	Eye-to-Hand Calibration
	Theoretical Framework
	Calibration Setup
	Convergence
	Validation of Results
	GitHub Repository

	Grabbing Experiments
	Static Block
	Oscillating Suspended Block
	Camera and Robot in ROS

	Pose Tracking
	Future Work and Conclusion
	Future Work
	Conclusion

	Bibliography
	Annex
	Additional Setup for Intel Realsense D455
	ArUco Board Creation in PDF on Ubuntu 20.04
	Pose Estimation Validation with OptiTrack
	ArUco Board Eye-to-hand Calibration Convergence study

