-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathexp_1.py
166 lines (154 loc) · 4.95 KB
/
exp_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
import os
import argparse
import random
import warnings
from loguru import logger
import torch
import torch.backends.cudnn as cudnn
from yolox.core import Trainer, launch
from yolox.utils import configure_nccl, configure_omp, get_num_devices
import os
from yolox.exp import Exp as MyExp
from yolox.models import EfficientNet
class Exp(MyExp):
"""
set the model detail here,inclue the data,dataaug etc.
"""
def __init__(self,output_dir):
super(Exp, self).__init__()
self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
self.data_dir="datasets/COCO/"
#self.data_dir = "datasets/COCO/"
self.output_dir = output_dir
# yolox_l 不用很大的模型
self.depth = 1
self.width = 1
size = 544
lrd = 10
self.max_epoch = 75
self.warmup_epochs = 10
self.no_aug_epochs = 15
self.num_classes = 10
self.min_lr_ratio = 0.01
self.warmup_lr = 1e-7
self.input_size = (size, size)
self.test_size = (size, size)
self.basic_lr_per_img = 0.01 / (64.0 * lrd)
self.eval_interval = 10
self.exp_name = "Poly_loss_exp"
def get_model(self):
model = super().get_model()#backbone=backbone)
return model
def make_parser():
parser = argparse.ArgumentParser("YOLOX train parser")
# distributed
parser.add_argument(
"--dist-backend", default="nccl", type=str, help="distributed backend"
)
parser.add_argument(
"--dist-url",
default=None,
type=str,
help="url used to set up distributed training",
)
parser.add_argument("-b", "--batch-size", type=int, default=1, help="batch size")
parser.add_argument(
"-d", "--devices", type=int, default=1, help="device for training"
)
parser.add_argument(
"--resume", default=False, action="store_true", help="resume training"
)
parser.add_argument("-c", "--ckpt", default="ckpt/yolox_l.pth", type=str, help="checkpoint file")
parser.add_argument("-bkc", "--backbone_ckpt", default="ckpt/yolov4-p5.pt", type=str, help="checkpoint file")
parser.add_argument(
"-e",
"--start_epoch",
default=None,
type=int,
help="resume training start epoch",
)
parser.add_argument(
"--num_machines", default=1, type=int, help="num of node for training"
)
parser.add_argument(
"--machine_rank", default=0, type=int, help="node rank for multi-node training"
)
parser.add_argument(
"--fp16",
dest="fp16",
default=True,
action="store_true",
help="Adopting mix precision training.",
)
parser.add_argument(
"--cache",
dest="cache",
default=False,
action="store_true",
help="Caching imgs to RAM for fast training.",
)
parser.add_argument(
"-o",
"--occupy",
dest="occupy",
default=False,
action="store_true",
help="occupy GPU memory first for training.",
)
parser.add_argument(
"-l",
"--logger",
type=str,
help="Logger to be used for metrics",
default="tensorboard"
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
# this arg should be set in the huawei notebook
parser.add_argument("--model",type=str,default="YOLOX_out",help='the path model saved')
return parser
@logger.catch
def main(exp, args):
# do not set the seed to speed up
if exp.seed is not None:
random.seed(exp.seed)
torch.manual_seed(exp.seed)
cudnn.deterministic = True
warnings.warn(
"You have chosen to seed training. This will turn on the CUDNN deterministic setting, "
"which can slow down your training considerably! You may see unexpected behavior "
"when restarting from checkpoints."
)
# set environment variables for distributed training
configure_nccl()
configure_omp()
cudnn.benchmark = True
# something set in the args some in the exp ,so we pass all of two
trainer = Trainer(exp, args)
trainer.train()
if __name__ == "__main__":
args = make_parser().parse_args()
# the model will be set in the huawei train notebook
exp = Exp(output_dir=args.model)
# this line merge the input into the exp,by overwrite
exp.merge(args.opts)
args.experiment_name="taril"
num_gpu = get_num_devices() if args.devices is None else args.devices
assert num_gpu <= get_num_devices()
dist_url = "auto" if args.dist_url is None else args.dist_url
launch(
main,
num_gpu,
args.num_machines,
args.machine_rank,
backend=args.dist_backend,
dist_url=dist_url,
args=(exp, args),
)