
BusyReplying Bug
• In VENTOS, during the execution of operations, the protocol only 
considers the messages about the on-going operation.

• Since this logic makes the delivery of unnecessary messages, it 
needs to be resolved by adding a common message handler. 

• Ex) during 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 operation, only the messages of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 micro-
operations are considered, and other messages, such as 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅 are ignored.



MERGE_REQUEST Attempt bug
• When a platoon leader requests 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 and the receiver rejects or 
ignores 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅s more than three times, the sender 
should no longer send messages.

• However, in VENTOS, since they just change the 
mergeReqAttempts variable to 0, the sender requests Merge again 
to the same vehicle by the end of the simulation.

• This bug can be solved by storing the
ids of vehicles exceeding three times
of the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅s.



FollowerLeaveProtocol bug
• In the paper on VENTOS protocol, they described that the 
𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑆𝑆𝑀𝑀 𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀 𝐿𝐿𝑀𝑀𝐿𝐿𝐿𝐿𝑀𝑀 consists of the sequential operation of 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. 

• However, the last 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 operation is executed by 𝑂𝑂𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑀𝑀 policy 
and it causes that 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is requested before the end of preceding 
operations, and thus triggers several unnecessary messages.

• Therefore, it must be implemented that the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is executed in 
the proper order according to the specified protocol.



LeavedVehList bug
• During or after 𝐿𝐿𝑀𝑀𝐿𝐿𝐿𝐿𝑀𝑀 operation in VENTOS, we found that a new 
leader or rear leader sent messages to leaved leader vehicle.

• Since, in VENTOS protocol, when a vehicle leaves a platoon, the 
vehicle is regarded as an unconnected vehicle, it can not reply to 
any message.

• Therefore, it is necessary to prevent a vehicle from sending several 
redundant messages, such as 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅s by 𝑂𝑂𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑀𝑀 policy 
to leaved vehicles.

• We can solve this bug by storing the ids of vehicles that request 
𝐿𝐿𝑀𝑀𝐿𝐿𝐿𝐿𝑀𝑀 in 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅 attempt code. 



LeaveSplitCaller bug (1/2)
• For dealing with various 𝐿𝐿𝑀𝑀𝐿𝐿𝐿𝐿𝑀𝑀 operations in VENTOS, their protocol uses 

splitCaller variable to check the 𝐿𝐿𝑀𝑀𝐿𝐿𝐿𝐿𝑀𝑀 cases.
• Ex) splitCaller – 1: 𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀 𝐿𝐿𝑀𝑀𝐿𝐿𝐿𝐿𝑀𝑀, 0: 𝐿𝐿𝑀𝑀𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀 𝐿𝐿𝑀𝑀𝐿𝐿𝐿𝐿𝑀𝑀, -1: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

• However, in the second 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 call for 𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑆𝑆𝑀𝑀 𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀 𝐿𝐿𝑀𝑀𝐿𝐿𝐿𝐿𝑀𝑀, the 
splitCaller needs to be -1 separate from the 𝑀𝑀𝐸𝐸𝑀𝑀 𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀 𝐿𝐿𝑀𝑀𝐿𝐿𝐿𝐿𝑀𝑀 call.

• For the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 operation to be performed by 𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑆𝑆𝑀𝑀 𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀 𝐿𝐿𝑀𝑀𝐿𝐿𝐿𝐿𝑀𝑀, the 
leader must accept 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅 in a non-busy state after the 
second split ends.

• But now, since the second 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is called with splitCaller=1, 

the leader keeps busy even after 

the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ends.



LeaveSplitCaller bug (2/2)
• In current implementation, since the second 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is called with 
splitCaller=1, the leader keeps busy even after the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ends.

• To solve this bug, the protocol needs to distinguish the second 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 call of 𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑆𝑆𝑀𝑀 𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀 𝐿𝐿𝑀𝑀𝐿𝐿𝐿𝐿𝑀𝑀 and the first 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 call of 
𝑀𝑀𝐸𝐸𝑀𝑀 𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀 𝐿𝐿𝑀𝑀𝐿𝐿𝐿𝐿𝑀𝑀.



ChangeVehStateLastly bug
• In 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 operation in VENTOS, the last micro-operation to notify that 
the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is finished is 𝑀𝑀𝐺𝐺𝐺𝐺_𝐶𝐶𝑀𝑀𝑀𝑀𝐺𝐺𝑅𝑅𝑀𝑀𝐶𝐶 or 𝑆𝑆𝐺𝐺𝐿𝐿𝑆𝑆𝑅𝑅_𝑀𝑀𝐸𝐸𝐶𝐶.

• However, in the VENTOS protocol, the state of the split vehicle is 
changed in 𝐶𝐶𝐶𝐶𝐺𝐺𝐸𝐸𝑀𝑀𝑀𝑀_𝐺𝐺𝐿𝐿.

• The problem is that the busy state of the vehicle is not changed yet.
• Due to this bug, we found quite a few examples of 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅s in the execution of other operations.

• We can solve this bug by synchronizing the state and busy change.


	BusyReplying Bug
	MERGE_REQUEST Attempt bug
	FollowerLeaveProtocol bug
	LeavedVehList bug
	LeaveSplitCaller bug (1/2)
	LeaveSplitCaller bug (2/2)
	ChangeVehStateLastly bug

