BusyReplying Bug

* In VENTOS, during the execution of operations, the protocol only
considers the messages about the on-going operation.

» Since this logic makes the delivery of unnecessary messages, it
needs to be resolved by adding a common message handler.

 Ex) during Split operation, only the messages of Split micro-
operations are considered, and other messages, such as
MERGE_REQUEST are ignored.

else if(vehicleState == state waitForSplitReply) else if(vehicleState == state waitForCHANGEPL) else if(vehicleState == state platoonFollower)

{ {
if(wsm-=getUCommandType() == SPLIT ACCEPT && if (wsm-=>getUCommandType() == CHANGE PL && // splitting vehicle receives a SPLIT REQ f
f { if (wsm->getUCommandType() == SPLIT REQ &&
. {
else if(vehicleState == state waitForAck) else if(vehicleState == state waitForSplitDone)
{ {
if (wsm->getUCommandType() == ACK &S if(wsm->getUCommandType() == SPLIT DONE &&

{ {

MERGE_REQUEST Attempt bug

* When a platoon leader requests Merge and the receiver rejects or
ignores MERGE_REQUESTSs more than three times, the sender
should no longer send messages.

« However, in VENTOS, since they just change the
mergeRegAttempts variable to 0, the sender requests Merge again
to the same vehicle by the end of the simulation.

if(msg == plnTIMER1) // plnTIMER1l: waitForMergeRequest
if(vehicleState == state waitForMergeReply)

 This bug can be solved by storing the
|dS Of Veh|C|eS exceed|ng three t|mes { // leader does not response after three re-attempts

if(mergeRegAttempts == 3)
1

of the MERGE_REQUESTS. mergeRegAttempts = 0;

setVehicleState(state platoonlLeader);
}

else

{
setVehicleState(state sendMergeReq);

merge BeaconFSM();
I
h
1

FollowerLeaveProtocol bug

* In the paper on VENTOS protocol, they described that the
Middle Follower Leave consists of the sequential operation of

Split, Split, and Merge.

« However, the last Merge operation is executed by OptSize policy
and it causes that Merge is requested before the end of preceding
operations, and thus triggers several unnecessary messages.

 Therefore, it must be implemented that the Merge is executed in

the proper order according to the speC|f|ed protocol

c

[@QW@@@@@]
/cs P // A ocf o cf b cf {
First Split [Cw)éﬁﬂ k;QQQQwQDv;DGIP]

c¢ cf cf cf ¢t cf

Second Split [CO) @] [@] [Co/‘ &2 &P @]

c§ ¢t cf

M []

¢ ¢t cf
k22w£1361963?]
¢t ¢ cf cf o cf
Mee [& &2 &2 & @]
Expected: Split -> Split (Vehicle Leave) -> Merge // FLeave End

Real: Split -> Split (Vehicle Leave) // FLeave End -> Merge }

Jfomi
ELSE

dle follower wants to leave (we need two splits)

RemainingSplits = 2;

// start the first split

splittingDepth = wsm->getValue().myPLltDepth + 1;
splittingVehicle = plnMembersList[splittingDepth];
splitCaller = 1; // Notifying split that follower leave is the caller
setVehicleState(state sendSplitReq);

split DataFsM();

LeavedVehList bug

 During or after Leave operation in VENTOS, we found that a new
leader or rear leader sent messages to leaved leader vehicle.

* Since, in VENTOS protocol, when a vehicle leaves a platoon, the
vehicle is regarded as an unconnected vehicle, it can not reply to
any message.

 Therefore, it is necessary to prevent a vehicle from sending several
redundant messages, such as MERGE_REQUESTSs by OptSize policy
to leaved vehicles.

« We can solve this bug by storing the ids of vehicles that request
Leave in MERGE_REQUEST attempt code.

LeaveSplitCaller bug (1/2)

 For dealing with various Leave operations in VENTOS, their protocol uses
splitCaller variable to check the Leave cases.
* Ex) splitCaller — 1: Follower Leave, O: Leader Leave, -1: Split

« However, in the second Split call for Middle Follower Leave, the
splitCaller needs to be -1 separate from the End Follower Leave call.

« For the Merge operation to be performed by Middle Follower Leave, the
leader must accept MERGE_REQUEST in a non-busy state after the

second split ends.

 But now, since the second
Split is called with splitCaller=1,
the leader keeps busy even after
the Split ends.

else if(RemainingSplits == 1)

// start the second split

splittingDepth = plnSize - 1;

splittingVehicle = plnMembersList[splittingDepth];
Splittalﬁer = 1; // Notifying split that follower leave is the caller

setVehicleState(state sendSplitReq);

split DataFsM();

LeaveSplitCaller bug (2/2)

* In current implementation, since the second Split is called with
splitCaller=1, the leader keeps busy even after the Split ends.

» To solve this bug, the protocol needs to distinguish the second
Split call of Middle Follower Leave and the first Split call of

End Follower Leave.

else if(RemainingSplits == 1)

{
// start the second split
splittingDepth = plnSize - 1;
splittingVehicle = plnMembersList[splittingDepth];
splitCaljler = 1; // Notifying split that follower leave is the caller

setVehicleState(state sendSplitReq);

split DataFsM();

ChangeVehStatelastly bug

* In Split operation in VENTOS, the last micro-operation to notify that
the Split is finished is GAP_CREATED or SPLIT_END.

« However, in the VENTOS protocol, the state of the split vehicle is
changed in CHANGE _PL.

* The problem is that the busy state of the vehicle is not changed yet.

 Due to this bug, we found quite a few examples of
MERGE_REQUESTSs in the execution of other operations.

« We can solve this bug by synchronizing the state and busy change.

if (wsm->getUCommandType() == CHANGE PL && wsm->

{
cancelEvent (plLnTIMERS) ;

// save my old platoon leader id for future
oldPlnID = myPLlnID;

J// I am a free agent now!|

myPLnID = wsm-=>getValue().newPltLeader;
myPLlnDepth += wsm->getValue().newPltDepth;
plnSize = 1;

	BusyReplying Bug
	MERGE_REQUEST Attempt bug
	FollowerLeaveProtocol bug
	LeavedVehList bug
	LeaveSplitCaller bug (1/2)
	LeaveSplitCaller bug (2/2)
	ChangeVehStateLastly bug

