-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
244 lines (177 loc) · 10.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import math
import cv2
import numpy as np
from time import time
import mediapipe as mp
import matplotlib.pyplot as plt
from IPython.display import HTML
import pandas as pd
import os
import random as r
# Initializing mediapipe pose class.
mp_pose = mp.solutions.pose
# Setting up the Pose function.
pose = mp_pose.Pose(static_image_mode=True, min_detection_confidence=0.3, model_complexity=2)
# Initializing mediapipe drawing class, useful for annotation.
mp_drawing = mp.solutions.drawing_utils
path='TRAIN/Vrukshasana/Images/'
data=[]
points = mp_pose.PoseLandmark
for p in points:
x = str(p)[13:]
data.append(x + "_x")
data.append(x + "_y")
data.append(x + "_z")
data.append(x + "_vis")
data = pd.DataFrame(columns = data)
count = 0
for img in os.listdir(path):
temp = []
img = cv2.imread(path + "/" + img)
imageWidth, imageHeight = img.shape[:2]
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
blackie = np.zeros(img.shape) # Blank image
results = pose.process(imgRGB)
if results.pose_landmarks:
# mpDraw.draw_landmarks(img, results.pose_landmarks, mpPose.POSE_CONNECTIONS) #draw landmarks on image
mp_drawing.draw_landmarks(blackie, results.pose_landmarks, mp_pose.POSE_CONNECTIONS) # draw landmarks on blackie
landmarks = results.pose_landmarks.landmark
for i,j in zip(points,landmarks):
temp = temp + [j.x, j.y, j.z, j.visibility]
data.loc[count] = temp
count +=1
data.to_csv("Results/Dataset_Vrukshasana.csv") # save the data as a csv file
def detectPose(image, pose, display=True):
'''
This function performs pose detection on an image.
Args:
image: The input image with a prominent person whose pose landmarks needs to be detected.
pose: The pose setup function required to perform the pose detection.
display: A boolean value that is if set to true the function displays the original input image, the resultant image,
and the pose landmarks in 3D plot and returns nothing.
Returns:
output_image: The input image with the detected pose landmarks drawn.
landmarks: A list of detected landmarks converted into their original scale.
'''
# Create a copy of the input image.
output_image = image.copy()
# Convert the image from BGR into RGB format.
imageRGB = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Perform the Pose Detection.
results = pose.process(imageRGB)
# Retrieve the height and width of the input image.
height, width, _ = image.shape
# Initialize a list to store the detected landmarks.
landmarks = []
# Check if any landmarks are detected.
if results.pose_landmarks:
# Draw Pose landmarks on the output image.
mp_drawing.draw_landmarks(image=output_image, landmark_list=results.pose_landmarks,
connections=mp_pose.POSE_CONNECTIONS)
# Iterate over the detected landmarks.
for landmark in results.pose_landmarks.landmark:
# Append the landmark into the list.
landmarks.append((int(landmark.x * width), int(landmark.y * height),
(landmark.z * width)))
# Check if the original input image and the resultant image are specified to be displayed.
if display:
# Display the original input image and the resultant image.
plt.figure(figsize=[22,22])
plt.subplot(121);plt.imshow(image[:,:,::-1]);plt.title("Original Image");plt.axis('off');
plt.subplot(122);plt.imshow(output_image[:,:,::-1]);plt.title("Output Image");plt.axis('off');
# Also Plot the Pose landmarks in 3D.
mp_drawing.plot_landmarks(results.pose_world_landmarks, mp_pose.POSE_CONNECTIONS)
# Otherwise
else:
# Return the output image and the found landmarks.
# print(landmarks)
return output_image, landmarks
def calculateAngle(landmark1, landmark2, landmark3):
'''
This function calculates angle between three different landmarks.
Args:
landmark1: The first landmark containing the x,y and z coordinates.
landmark2: The second landmark containing the x,y and z coordinates.
landmark3: The third landmark containing the x,y and z coordinates.
Returns:
angle: The calculated angle between the three landmarks.
'''
# Get the required landmarks coordinates.
x1, y1, _ = landmark1
x2, y2, _ = landmark2
x3, y3, _ = landmark3
# Calculate the angle between the three points
angle = math.degrees(math.atan2(y3 - y2, x3 - x2) - math.atan2(y1 - y2, x1 - x2))
# Check if the angle is less than zero.
if angle < 0:
# Add 360 to the found angle.
angle += 360
# Return the calculated angle.
return angle
#data collector
def angles_finder(landmarks):
# Get the angle between the left shoulder, elbow and wrist points.
left_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value])
# Get the angle between the right shoulder, elbow and wrist points.
right_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value])
# Get the angle between the left elbow, shoulder and hip points.
left_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value])
# Get the angle between the right hip, shoulder and elbow points.
right_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value])
# Get the angle between the left hip, knee and ankle points.
left_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_HIP.value],
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value],
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value])
# Get the angle between the right hip, knee and ankle points
right_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value])
angle_for_ardhaChandrasana1 = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value],
landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value])
angle_for_ardhaChandrasana2 = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value],
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value])
hand_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value])
left_hip_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value],
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value])
right_hip_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value])
neck_angle_uk = calculateAngle(landmarks[mp_pose.PoseLandmark.NOSE.value],
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value])
left_wrist_angle_bk = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value],
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value],
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value])
# Get the angle between the right wrist, hip, and ankle points
right_wrist_angle_bk = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value],
landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value])
#----------------------------------------------------------------------------------------------------------------
return [left_elbow_angle,right_elbow_angle,left_shoulder_angle,right_shoulder_angle,left_knee_angle,right_knee_angle,angle_for_ardhaChandrasana1,angle_for_ardhaChandrasana2,hand_angle,left_hip_angle,right_hip_angle,neck_angle_uk,left_wrist_angle_bk,right_wrist_angle_bk]
df = pd.DataFrame(columns = ['Label','left_elbow_angle','right_elbow_angle','left_shoulder_angle','right_shoulder_angle','left_knee_angle','right_knee_angle','angle_for_ardhaChandrasana1','angle_for_ardhaChandrasana2','hand_angle','left_hip_angle','right_hip_angle','neck_angle_uk','left_wrist_angle_bk','right_wrist_angle_bk'])
print(df)
for filename in os.listdir(path):
# Check if the file is an image
if filename.endswith('.jpg') or filename.endswith('.jpeg') or filename.endswith('.png'):
# Read the image
label = os.path.join(path, filename)
image = cv2.imread(label)
output_image, landmarks = detectPose(image, pose, display=False)
if landmarks:
r = angles_finder(landmarks)
df = pd.concat([df,pd.DataFrame.from_records([{'Label':label,'left_elbow_angle':r[0],'right_elbow_angle':r[1],'left_shoulder_angle':r[2],'right_shoulder_angle':r[3],'left_knee_angle':r[4],'right_knee_angle':r[5],'angle_for_ardhaChandrasana1':r[6],'angle_for_ardhaChandrasana2':r[7],'hand_angle':r[8],'left_hip_angle':r[9],'right_hip_angle':r[10],'neck_angle_uk':r[11],'left_wrist_angle_bk':r[12],'right_wrist_angle_bk':r[13]}])])
print(df.head())
df.to_csv("Results/Dataset_Vrukshasana_Angles.csv")