-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathImplementing model using cnn.py
164 lines (121 loc) · 5.19 KB
/
Implementing model using cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import json
import numpy as np
from sklearn.model_selection import train_test_split
import tensorflow.keras as keras
import matplotlib.pyplot as plt
DATA_PATH = "data_10.json"
def load_data(data_path):
"""Loads training dataset from json file.
:param data_path (str): Path to json file containing data
:return X (ndarray): Inputs
:return y (ndarray): Targets
"""
with open(data_path, "r") as fp:
data = json.load(fp)
X = np.array(data["mfcc"])
y = np.array(data["labels"])
return X, y
def plot_history(history):
"""Plots accuracy/loss for training/validation set as a function of the epochs
:param history: Training history of model
:return:
"""
fig, axs = plt.subplots(2)
# create accuracy sublpot
axs[0].plot(history.history["accuracy"], label="train accuracy")
axs[0].plot(history.history["val_accuracy"], label="test accuracy")
axs[0].set_ylabel("Accuracy")
axs[0].legend(loc="lower right")
axs[0].set_title("Accuracy eval")
# create error sublpot
axs[1].plot(history.history["loss"], label="train error")
axs[1].plot(history.history["val_loss"], label="test error")
axs[1].set_ylabel("Error")
axs[1].set_xlabel("Epoch")
axs[1].legend(loc="upper right")
axs[1].set_title("Error eval")
plt.show()
def prepare_datasets(test_size, validation_size):
"""Loads data and splits it into train, validation and test sets.
:param test_size (float): Value in [0, 1] indicating percentage of data set to allocate to test split
:param validation_size (float): Value in [0, 1] indicating percentage of train set to allocate to validation split
:return X_train (ndarray): Input training set
:return X_validation (ndarray): Input validation set
:return X_test (ndarray): Input test set
:return y_train (ndarray): Target training set
:return y_validation (ndarray): Target validation set
:return y_test (ndarray): Target test set
"""
# load data
X, y = load_data(DATA_PATH)
# create train, validation and test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=validation_size)
# add an axis to input sets
X_train = X_train[..., np.newaxis]
X_validation = X_validation[..., np.newaxis]
X_test = X_test[..., np.newaxis]
return X_train, X_validation, X_test, y_train, y_validation, y_test
def build_model(input_shape):
"""Generates CNN model
:param input_shape (tuple): Shape of input set
:return model: CNN model
"""
# build network topology
model = keras.Sequential()
# 1st conv layer
model.add(keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
model.add(keras.layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same'))
model.add(keras.layers.BatchNormalization())
# 2nd conv layer
model.add(keras.layers.Conv2D(32, (3, 3), activation='relu'))
model.add(keras.layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same'))
model.add(keras.layers.BatchNormalization())
# 3rd conv layer
model.add(keras.layers.Conv2D(32, (2, 2), activation='relu'))
model.add(keras.layers.MaxPooling2D((2, 2), strides=(2, 2), padding='same'))
model.add(keras.layers.BatchNormalization())
# flatten output and feed it into dense layer
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(64, activation='relu'))
model.add(keras.layers.Dropout(0.3))
# output layer
model.add(keras.layers.Dense(10, activation='softmax'))
return model
def predict(model, X, y):
"""Predict a single sample using the trained model
:param model: Trained classifier
:param X: Input data
:param y (int): Target
"""
# add a dimension to input data for sample - model.predict() expects a 4d array in this case
X = X[np.newaxis, ...] # array shape (1, 130, 13, 1)
# perform prediction
prediction = model.predict(X)
# get index with max value
predicted_index = np.argmax(prediction, axis=1)
print("Target: {}, Predicted label: {}".format(y, predicted_index))
if __name__ == "__main__":
# get train, validation, test splits
X_train, X_validation, X_test, y_train, y_validation, y_test = prepare_datasets(0.25, 0.2)
# create network
input_shape = (X_train.shape[1], X_train.shape[2], 1)
model = build_model(input_shape)
# compile model
optimiser = keras.optimizers.Adam(learning_rate=0.0001)
model.compile(optimizer=optimiser,
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.summary()
# train model
history = model.fit(X_train, y_train, validation_data=(X_validation, y_validation), batch_size=32, epochs=50)
# plot accuracy/error for training and validation
plot_history(history)
# evaluate model on test set
test_loss, test_acc = model.evaluate(X_test, y_test, verbose=2)
print('\nTest accuracy:', test_acc)
# pick a sample to predict from the test set
X_to_predict = X_test[100]
y_to_predict = y_test[100]
# predict sample
predict(model, X_to_predict, y_to_predict)