-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathetl.py
118 lines (86 loc) · 3.63 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import glob
import psycopg2
import pandas as pd
from sql_queries import *
def process_song_file(cur, filepath):
"""Read song file, insert song and artist data into the database.
Song record inserts data for song_id, title, artist_id, year and duration.
Artist record inserts data for artist_id, name, location, lattitude, longitude.
"""
# open song file
df = pd.read_json(filepath, lines=True)
# change year datatype from numpy int64 to string
# error occurs on database write with int64 data type
df['year'] = df['year'].apply(lambda x: str(x))
# insert song record
song_data = df.iloc[0, [7, 8, 0, 9, 5]].values.tolist()
cur.execute(song_table_insert, song_data)
# insert artist record
artist_data = df.iloc[0, [0, 4, 2, 1, 3]].values.tolist()
cur.execute(artist_table_insert, artist_data)
def process_log_file(cur, filepath):
"""Read log file, process and load data into user and songplay tables.
"""
# open log file
df = pd.read_json(filepath,lines=True)
# filter by NextSong action
df = df[df.page == 'NextSong']
# convert timestamp column to datetime
t = pd.to_datetime(df['ts'], unit='ms')
df['ts'] = pd.to_datetime(df['ts'], unit='ms')
# insert time data records
time_data = [t,t.dt.hour,t.dt.day,t.dt.week,t.dt.month,t.dt.year,t.dt.weekday]
column_labels = ("timestamp","hour","day","week","month","year","weekday")
time_dict = {}
for i in range(0,len(column_labels)):
time_dict.update({column_labels[i]:time_data[i]})
time_df = pd.DataFrame.from_dict(time_dict)
for i, row in time_df.iterrows():
cur.execute(time_table_insert, list(row))
# load user table
user_df = df.iloc[:,[17,2,5,3,7]]
# insert user records
for i, row in user_df.iterrows():
cur.execute(user_table_insert, row)
# insert songplay records
for index, row in df.iterrows():
# get songid and artistid from song and artist tables
results = cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
songid, artistid = results
else:
songid, artistid = None, None
# insert songplay record
songplay_data = list([row.ts, row.userId,row.level,songid,artistid
,row.sessionId,row.location,row.userAgent])
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath, func):
"""Identify and process datafiles, based on filepath and function passed
"""
# get all files matching extension from directory
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root,'*.json'))
for f in files :
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
print('{} file processing.'.format(datafile))
func(cur, datafile)
conn.commit()
print('{}/{} files processed.'.format(i, num_files))
def main():
"""Establish database connection, process song and log data.
"""
conn = psycopg2.connect("host=127.0.0.1 dbname=sparkifydb user=student password=student")
cur = conn.cursor()
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
conn.close()
if __name__ == "__main__":
main()