-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
42 lines (42 loc) · 1.21 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Package: RLescalation
Type: Package
Title: Optimal Dose Escalation Using Deep Reinforcement Learning
Version: 1.0.1
Authors@R: c(
person("Kentaro", "Matsuura", , "matsuurakentaro55@gmail.com",
role = c("aut", "cre", "cph"), comment = c(ORCID = "0000-0001-5262-055X")))
Description: An implementation to compute an optimal dose escalation rule
using deep reinforcement learning in phase I oncology trials
(Matsuura et al. (2023) <doi:10.1080/10543406.2023.2170402>).
The dose escalation rule can directly optimize the percentages of correct
selection (PCS) of the maximum tolerated dose (MTD).
URL: https://github.com/MatsuuraKentaro/RLescalation
BugReports: https://github.com/MatsuuraKentaro/RLescalation/issues
VignetteBuilder: knitr
License: MIT + file LICENSE
Encoding: UTF-8
Language: en-US
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.3.2
Imports:
glue,
R6,
nleqslv,
reticulate,
stats,
utils
Suggests:
knitr,
rmarkdown
Collate:
'timer.R'
'train_algo.R'
'utils.R'
'escalation_rule.R'
'rl_dnn_config.R'
'rl_config_set.R'
'compute_rl_scenarios.R'
'learn_escalation_rule.R'
'setup_python.R'
'zzz.R'
'simulate_one_trial.R'