-
Tabular
- pandas
- numpy
-
Tools
- joblib: persistence
-
Visualization
- plotly express / graphing objects
- ipywidgets: subplot container
-
Machine Learning
- scikit-learn: pipeline, models
- imbalanced-learn: resampling
- feature-engine: transformers
-
API
- flask
.
├── app : API
│ └── templates: html structure of the form page
├── bin: dataset downloader (requires Kaggle API key)
├── data: train / test + answer
├── models: ml models and pipelines
├── notebooks: exploration, evaluation
├── output: plots
├── src: pipeline builder, viz functions, etc
└── tests: api, result matches local / distant models
Run locally
export FLASK_APP=app/app.py
flask run -h 0.0.0.0 -p 5000
API call example
curl -X POST \
-d "Gender=male" \
-d "Vehicle_Damage=yes" \
-d "Vehicle_Age=<1 Year" \
-d "Region_Code=28" \
-d "Policy_Sales_Channel=124" \
-d "Annual_Premium=30000" \
-d "Age=25" \
-d "Previously_Insured=0" \
http://localhost:5000/predict
UI app
http://127.0.0.1:5000/predict