-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsplines.py
86 lines (65 loc) · 3.61 KB
/
splines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import numpy as np
import scipy.ndimage
def create_splines(quantity: int, resolution: int=500, order: int=3, const_spline: bool=True):
"""
Creates and returns a given number of splines as a numpy array.
Uses De Boor's algorithm to recursively create the splines.
Also offers an option to use two sets of splines to create 3-dimensional splines.
:param quantity: The number of splines.
:param resolution: The length of the spline vectors to be returned.
:param order: The order of the splines. Default is cubic splines.
:param const_spline: Whether or not to include a constant spline
"""
domain = np.asarray(np.linspace(start=0.0, stop=1.0, num=resolution))
# Need enough knots for the algorithm to generate the correct number of k^th order splines
knots = np.asarray(np.linspace(start=domain[0],
stop=domain[-1],
num=(quantity + order + 1)))
if not isinstance(quantity, int):
raise TypeError("quantity must be an integer")
if not isinstance(resolution, int):
raise TypeError("resolution must be an integer")
if not isinstance(order, int):
raise TypeError("order must be an integer")
# Now create the splines
# Make the initial order-0 splines to run the algorithm on
spline_0 = np.asarray([[1 if knots[i] <= domain[j] <= knots[i + 1] else 0 for j in range(resolution)]
for i in range(0, len(knots) - 1)])
# The recursive algorithm to generate the higher order splines
def recursive_de_boors(i, ord):
if 0 == ord:
return spline_0[i, :]
else:
coeff_one = np.array((domain - knots[i]) / (knots[i + ord] - knots[i]))
coeff_two = np.array((knots[i + ord + 1] - domain) / (knots[i + ord + 1] - knots[i + 1]))
return (coeff_one * recursive_de_boors(i, ord - 1)) + (coeff_two * recursive_de_boors(i + 1, ord - 1))
# Now call the algorithm for each spline
splines = []
for i in range(0, quantity):
splines.append(recursive_de_boors(i, order))
splines = np.asarray(splines)
# Now we "clip" the splines:
#
# For the smoothing model to work well at the endpoints, we need to clip the splines so that the
# ones at the ends are only partial splines. Otherwise, the endpoint measurements would always be 0.
# Get the indices to clip
left_clip = np.argmax(splines[0]) + abs(splines[0, np.argmax(splines[0]):np.argmax(splines[2])] -
splines[2, np.argmax(splines[0]):np.argmax(splines[2])]).argmin()
right_cip = np.argmax(splines[-3]) + abs(splines[-3, np.argmax(splines[-3]):np.argmax(splines[-1])] -
splines[-1, np.argmax(splines[-3]):np.argmax(splines[-1])]).argmin()
splines = splines[:, left_clip:right_cip + 1]
# Now we need to scale the width of the splines to match the user requested resolution
scaled_clipped_splines = []
for s in splines:
scaled_clipped_splines.append(scipy.ndimage.zoom(s, resolution/len(s), order=3))
del splines
if const_spline:
const = np.array([1.0 for _ in range(len(scaled_clipped_splines[0]))])
scaled_clipped_splines = np.insert(scaled_clipped_splines, 0, const, axis=0)
return scaled_clipped_splines
def tensor_product(splines_a, splines_b):
splines = [np.outer(splines_a[0], splines_b[0])]
for a in splines_a[1:]:
for b in splines_b[1:]:
splines.append(np.outer(a, b))
return np.asarray(splines, dtype=np.float32)