-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconfigs.py
55 lines (51 loc) · 4.54 KB
/
configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
'''
Author: Li Wei
Email: wei008@e.ntu.edu.sg
'''
import argparse
def inputconfig_func():
parser = argparse.ArgumentParser()
parser.add_argument('--cuda', action='store_false', default=True, help='use GPU acceleration or not')
parser.add_argument('--lr', type=float, default=0.00005, metavar='LR', help='learning rate')
parser.add_argument('--base_lr', type=float, default=0.0000005, metavar='BLR', help='learning rate for base model')
parser.add_argument('--l2', type=float, default=0.00001, metavar='L2', help='L2 regularization weight')
parser.add_argument('--valid', type=float, default=0.1, metavar='va', help='valid for MELD dataset')
parser.add_argument('--dropout', type=float, default=0.20, metavar='dropout', help='dropout rate')
parser.add_argument('--att_dropout', type=float, default=0.10, metavar='attdropout', help='dropout rate for '
'relative attention')
parser.add_argument('--batch-size', type=int, default=1, metavar='BS', help='batch size')
parser.add_argument('--chunk_size', type=int, default=10, metavar='CS', help='chunk size')
parser.add_argument('--epochs', type=int, default=10, metavar='E', help='number of epochs')
parser.add_argument('--delta_epoch', type=int, default=0, metavar='DEL', help='number of additional epochs')
parser.add_argument('--input_dim', type=int, default=100, metavar='D', help='input dimension')
parser.add_argument('--output_dim', type=int, default=768, metavar='O', help='output dimension of pretrained model')
parser.add_argument('--num_workers', type=int, default=2, metavar='NW', help='number of workers in '
'Dataloader function')
parser.add_argument('--num_class', type=int, default=7, metavar='N', help='number of sentiment classes')
parser.add_argument('--num_relations', type=int, default=16, metavar='NR', help='number of dialog parsing relations')
parser.add_argument('--class-weight', action='store_true', default=False, help='class weight')
parser.add_argument('--activation', type=str, default='sigmoid', help='activation function')
parser.add_argument('--data_type', type=str, default='meld', help='whether use meld or daily')
parser.add_argument('--model_type', type=str, default='albert', help='pretrained_model_type')
parser.add_argument('--max_sen_len', type=int, default=30, help='max sentence length')
parser.add_argument('--slide_win', type=int, default=2, help='size of the sliding window')
parser.add_argument('--num_head', type=int, default=8, help='number of head in CoAtt')
parser.add_argument('--num_bases', type=int, default=2, help='number of bases of RGCN')
parser.add_argument('--lamb', type=float, default=0.5, help='a trade-off hyperparameter')
parser.add_argument('--num_features', type=int, default=4, help='number of features used in the model')
parser.add_argument('--use_future_utt', action='store_true', default=False, help='use future utterances or not')
parser.add_argument('--att_type', type=str, default='dot_att', help='attention type, dot-att, linear_att and item_att')
parser.add_argument('--src_num', type=int, default=4, help='number of words for source sentence')
parser.add_argument('--dst_num_per_rel', type=int, default=3, help='number of destination words per '
'relation per src word')
parser.add_argument('--model_path', type=str, default='./model/', help='path of saved model')
parser.add_argument('--glove_path', type=str, default='./glove/', help='path of glove embeddings')
parser.add_argument('--freeze_bert', action='store_true', default=False, help='freeze parameters of bert encoder')
parser.add_argument('--freeze_glove', action='store_true', default=False, help='freeze parameters of GloVe vectors')
parser.add_argument('--fine_tune', action='store_true', default=False, help='fine tune the model or not')
parser.add_argument('--use_layer_norm', action='store_true', default=False, help='use layer norm before activation function or not')
parser.add_argument('--use_fixed', action='store_true', default=False,
help='use fixed lamb or not')
parser.add_argument('--rel_fun', type=str, default='vector', help='rel function, vector, ones, linear, or average')
parser.add_argument('--tensorboard', action='store_true', default=False, help='Enables tensorboard log')
return parser.parse_args()