Skip to content

Latest commit

 

History

History
270 lines (194 loc) · 6.77 KB

NEWS.md

File metadata and controls

270 lines (194 loc) · 6.77 KB
Version 0.10.5
  • Add support of splitting weights for corrected impurity importance
  • Bug fixes
Version 0.10.4
  • Add inbag argument for manual selection of observations in trees
Version 0.10.3
  • Bug fixes
Version 0.10.2
  • Add max.depth parameter to limit tree depth
Version 0.10.1
  • Bug fixes
Version 0.10.0
  • New CRAN version
Version 0.9.12
  • Remove GenABEL from suggested packages (removed from CRAN). GenABEL data is still supported
Version 0.9.11
  • Improve memory management (internal changes)
Version 0.9.10
  • Add impurity importance for the maxstat splitting rule
  • Bug fixes
Version 0.9.9
  • Add 'order' mode for unordered factors for GenABEL SNP data (binary classification and regression)
Version 0.9.8
  • Bug fixes
Version 0.9.7
  • Change license of C++ core to MIT (R package is still GPL3)
Version 0.9.6
  • Better 'order' mode for unordered factors for multiclass and survival
Version 0.9.5
  • Bug fixes
Version 0.9.4
  • Add class-weighted Gini splitting
Version 0.9.3
  • Bug fixes
Version 0.9.2
  • Add fixed proportion sampling
Version 0.9.1
  • Bug fixes
Version 0.9.0
  • New CRAN version
Version 0.8.5
  • Faster aggregation of predictions
  • Fix memory issues on Windows 7
  • Add treeInfo() function to extract human readable tree structure
Version 0.8.4
  • Add quantile prediction as in quantile regression forests
Version 0.8.3
  • Add standard error estimation with the infinitesimal jackknife (now the default)
Version 0.8.2
  • Add bias-corrected impurity importance (actual impurity reduction, AIR)
  • Add impurity importance for survival forests
Version 0.8.1
  • Bug fixes
Version 0.8.0
  • New CRAN version
Version 0.7.2
  • Handle sparse data of class Matrix::dgCMatrix
  • Add prediction of standard errors to predict()
Version 0.7.1
  • Allow devtools::install_github() without subdir and on Windows
  • Bug fixes
Version 0.7.0
  • New CRAN version
Version 0.6.7
  • Improvements in holdoutRF and importance p-value estimation
Version 0.6.6
  • Split at mid-point between candidate values
Version 0.6.5
  • Better formula interface: Support interactions terms and faster computation
Version 0.6.4
  • Add randomized splitting (extraTrees)
Version 0.6.3
  • Bug fixes
Version 0.6.2
  • Drop unused factor levels in outcome before growing
  • Add predict.all for probability and survival prediction
Version 0.6.1
  • Bug fixes
Version 0.6.0
  • New CRAN version
Version 0.5.6
  • Faster version of getTerminalNodeIDs(), included in predict()
Version 0.5.5
  • Handle new factor levels in 'order' mode
  • Bug fixes
Version 0.5.4
  • Set write.forest=TRUE by default
  • Add num.trees option to predict()
  • Bug fixes
Version 0.5.3
  • Bug fixes
Version 0.5.2
  • Use unadjusted p-value for 2 categories in maxstat splitting
Version 0.5.1
  • Bug fixes
Version 0.5.0
  • New CRAN version
Version 0.4.7
  • Add splitting by maximally selected rank statistics for regression forests
Version 0.4.6
  • Bug fixes
Version 0.4.5
  • Use faster method for unordered factor splitting
Version 0.4.4
  • Add p-values for variable importance
  • Bug fixes
Version 0.4.3
  • Add splitting by maximally selected rank statistics for survival forests
  • Bug fixes
Version 0.4.2
  • Add Windows multithreading support for new toolchain
Version 0.4.1
  • Runtime improvement for regression forests on classification data
Version 0.4.0
  • New CRAN version. New CRAN versions will be 0.x.0, development versions 0.x.y
Version 0.3.9
  • Reduce memory usage of savest forest objects (changed child.nodeIDs interface)
Version 0.3.8
  • Remove tuning functions, please use mlr or caret
Version 0.3.7
  • Fix bug with alternative interface and prediction
  • Small fixes
Version 0.3.6
  • Add keep.inbag option to track in-bag counts
  • Add option sample.fraction for fraction of sampled observations
Version 0.3.5
  • Add tree-wise split.select.weights
Version 0.3.4
  • Add predict.all option in predict() to get individual predictions for each tree for classification and regression
  • Small changes in documentation
Version 0.3.3
  • Add case-specific random forests
Version 0.3.2
  • Add case weights (weighted bootstrapping or subsampling)
Version 0.3.1
  • Catch error of outdated gcc not supporting C++11 completely
Version 0.3.0
  • Allow the user to interrupt computation from R
  • Transpose classification.table and rename to confusion.matrix
  • Respect R seed for prediction
  • Memory improvements for variable importance computation
  • Fix bug: Probability prediction for single observations
  • Fix bug: Results not identical when using alternative interface
Version 0.2.7
  • Small fixes for Solaris compiler
Version 0.2.6
  • Add C-index splitting
  • Fix NA SNP handling
Version 0.2.5
  • Fix matrix and gwaa alternative survival interface
  • Version submitted to JSS
Version 0.2.4
  • Small changes in documentation
Version 0.2.3
  • Preallocate memory for splitting
Version 0.2.2
  • Remove recursive splitting
Version 0.2.1
  • Allow matrix as input data in R version
Version 0.2.0
  • Fix prediction of classification forests in R
Version 0.1.9
  • Speedup growing for continuous covariates
  • Add memory save option to save memory for very large datasets (but slower)
  • Remove memory mode option from R version since no performance gain
Version 0.1.8
  • Fix problems when using Rcpp <0.11.4
Version 0.1.7
  • Add option to split on unordered categorical covariates
Version 0.1.6
  • Optimize memory management for very large survival forests
Version 0.1.5
  • Set required Rcpp version to 0.11.2
  • Fix large $call objects when using BatchJobs
  • Add details and example on GenABEL usage to documentation
  • Minor changes to documentation
Version 0.1.4
  • Speedup for survival forests with continuous covariates
  • R version: Generate seed from R. It is no longer necessary to set the seed argument in ranger calls.
Version 0.1.3
  • Windows support for R version (without multithreading)
Version 0.1.2
  • Speedup growing of regression and probability prediction forests
  • Prediction forests are now handled like regression forests: MSE used for prediction error and permutation importance
  • Fixed name conflict with randomForest package for "importance"
  • Fixed a bug: prediction function is now working for probability prediction forests
  • Slot "predictions" for probability forests now contains class probabilities
  • importance function is now working even if randomForest package is loaded after ranger
  • Fixed a bug: Split selection weights are now working as expected
  • Small changes in documentation